• Title/Summary/Keyword: Spatial data change detection

Search Result 131, Processing Time 0.022 seconds

Land-cover Change detection on Korean Peninsula using NOAA AVHRR data (NOAA AVHRR 자료를 이용한 한반도 토지피복 변화 연구)

  • 김의홍;이석민
    • Spatial Information Research
    • /
    • v.4 no.1
    • /
    • pp.13-20
    • /
    • 1996
  • This study has been on detection of land-cover change on Korean peninsula (including the area of north Korean territory) between May of 1990 year and that of 1995 year using NOAA AVHRR data. It was necessary that imagery data should be registered to each other and should not be deviated much in seasonal variation in order to recognize land - cover change. Atmosphic effect such as clould and dirt was erased by maximum NDVI(Normalized Difference Vegetation Index) method the equation of which was as following $$NDVI(i,j,d)=\frac{ch2(j,j,d)-ch1(i,j,d)}{ch2(i,j,d)+ch1(i.j,d)}$$ Each image of maximum NDVI of '90 year and '95 year was c1assifed onto 8 categories ,using iso-clustering method each of which was water, wet barren and urban, crop field, field, mixed vegetation, shrub, forest and evergreen.

  • PDF

Early Disaster Damage Assessment using Remotely Sensing Imagery: Damage Detection, Mapping and Estimation (위성영상을 활용한 실시간 재난정보 처리 기법: 재난 탐지, 매핑, 및 관리)

  • Jung, Myung-Hee
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.2
    • /
    • pp.90-95
    • /
    • 2012
  • Remotely sensed data provide valuable information on land monitoring due to multi-temporal observation over large areas. Especially, high resolution imagery with 0.6~1.0 m spatial resolutions contain a wealth of information and therefore are very useful for thematic mapping and monitoring change in urban areas. Recently, remote sensing technology has been successfully utilized for natural disaster monitoring such as forest fire, earthquake, and floods. In this paper, an efficient change detection method based on texture differences observed from high resolution multi-temporal data sets is proposed for mapping disaster damage and extracting damage information. It is composed of two parts: feature extraction and detection process. Timely and accurate information on disaster damage can provide an effective decision making and response related to damage.

The Land Surface Temperature Analysis of Seoul city using Satellite Image (위성영상을 통한 서울시 지표온도 분석)

  • Jeong, Jong-Chul
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.1
    • /
    • pp.19-26
    • /
    • 2013
  • The propose of this study is to analyze the optimum spatial resolution of the urban spatial thermal environment structure and to evaluate of the possibility detection using aerial photographs and thermal satellite images. The proper techniques of the optimum spatial resolution for the urban spatial thermal environment structure were analyzed. Thermal infrared satellite image of Seoul city were used for the change rate of surface temperature variation and suggested to the spatial extent and effects of urban surface characteristics and spatial data was interpreted as regions. To extract the surface temperature, Landsat thermal infrared satellite image compared with an automatic weather station data and in the field of the measured temperature and surface temperature by thermal environment affects, the spatial domain has been verified. The surface temperature of the satellite images to extract after adjusting surface temperature isotherms were constructed. The changes in surface temperature from 2008 to 2012 the average surface temperature observation images of changing areas were divided into space. The results of this study are as follows: Through analysis of satellite imagery, Seoul city surface temperature change due to extraction comfort indices were classified into four grades. The comfort index indicative of the temperature of Gangnam-gu, $23.7{\sim}27.2(^{\circ}C)$ range and Songpagu, a $22.7{\sim}30.6(^{\circ}C)$ respectively, the surface temperature of Yeouido $25.8{\sim}32.6(^{\circ}C)$ were in the range.

Analysis of spatial change for the Subway Construction using Satellite image (위성영상을 이용한 지하철건설전후의 공간변화분석)

  • Han, Gi-Bong;Gang, In-Jun;Gwak, Jae-Ha;Seok, Cheol-Ho
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.107-110
    • /
    • 2007
  • There it has been progressed study about the city of land use and change detection in different period. The aim of the study is to find the differences in spatial change for subway construction lines using Landsat TM and SPOT image. The result of study to use judge the data in subway role about the city growth. In the recently, it will be expected to use important basis data in development of the city.

  • PDF

A Study on Construction & Management of Urban Spatial Information Based on Digital Twin (디지털트윈 기반의 도시 공간정보 구축 및 관리에 관한 연구)

  • Lih, BongJoo
    • Journal of Cadastre & Land InformatiX
    • /
    • v.53 no.1
    • /
    • pp.47-63
    • /
    • 2023
  • The Seoul Metropolitan Government is building and operating digital twin-based urban spatial information to solve various problems in the city and provide public services. Two essential factors to ensure the stable utilization of spatial information for the implementation of such a digital twin city are the latest and quality of the data. However, it is time-consuming and costly to maintain continuous updating of high-quality urban spatial information. To overcome this problem, we studied efficient urban spatial information construction technology and the operation, management, and update procedures of construction data. First, we demonstrated and applied automatic 3D building construction technology centered on point clouds using the latest hybrid sensors, confirmed that it is possible to automatically construct high-quality building models using high-density airborne lidar results, and established an efficient data management plan. By applying differentiated production methods by region, supporting detection of urban change areas through Seoul spatial feature identifiers, and producing international standard data by level, we strengthened the utilization of urban spatial information. We believe that this study can serve as a good precedent for local governments and related organizations that are considering activating urban spatial information based on digital twins, and we expect that discussions on the construction and management of spatial information as infrastructure information for city-level digital twin implementation will continue.

Object-based Building Change Detection from LiDAR Data and Digital Map Using Adaptive Overlay Threshold (적응적 중첩 임계치를 이용한 LiDAR 자료와 수치지도의 객체기반 건물변화탐지)

  • Lee, Sang-Yeop;Lee, Jeong-Ho;Han, Su-Hee;Choi, Jae-Wan;Kim, Yong-Il
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.3
    • /
    • pp.49-56
    • /
    • 2011
  • Because urban areas change rapidly, it is necessary to reflect urban changes in a digital map database in a timely manner. To address these issues, LiDAR data was used to detect changes in urban area buildings. The purpose of this study is to detect object-based building change using LiDAR data and existing digital maps, and classify change types. In the study, we classified change type using overlay and shape comparison with building layer of the digital maps and point-based extracted building outline from the LiDAR data. When applying the overlay method, we were able to increase the accuracy and objectivity of the change detection process throughout an adaptive threshold applied to each object. In the experiments, it was demonstrated that classifying and detecting changes in urban areas using the proposed method can provide superior classification accuracy compared with the existing methodology.

Object Classification and Change Detection in Point Clouds Using Deep Learning (포인트 클라우드에서 딥러닝을 이용한 객체 분류 및 변화 탐지)

  • Seo, Hong-Deok;Kim, Eui-Myoung
    • Journal of Cadastre & Land InformatiX
    • /
    • v.50 no.2
    • /
    • pp.37-51
    • /
    • 2020
  • With the development of machine learning and deep learning technologies, there has been increasing interest and attempt to apply these technologies to the detection of urban changes. However, the traditional methods of detecting changes and constructing spatial information are still often performed manually by humans, which is costly and time-consuming. Besides, a large number of people are needed to efficiently detect changes in buildings in urban areas. Therefore, in this study, a methodology that can detect changes by classifying road, building, and vegetation objects that are highly utilized in the geospatial information field was proposed by applying deep learning technology to point clouds. As a result of the experiment, roads, buildings, and vegetation were classified with an accuracy of 92% or more, and attributes information of the objects could be automatically constructed through this. In addition, if time-series data is constructed, it is thought that changes can be detected and attributes of existing digital maps can be inspected through the proposed methodology.

Change Vector Analysis : Change detection of flood area using LANDSAT TM Data (LANDSAT TM을 이용한 홍수지역의 변화탐지 : Change Vector Analysis 방법을 중심으로)

  • Yoon, Geun-Won;Yun, Young-Bo;Park, Jong-Hyun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.11 no.2 s.25
    • /
    • pp.47-52
    • /
    • 2003
  • Change detection and analysis is a powerful application of remote sensing, in that the spectral resolution of multi-band sensors can be used to advantage in monitoring both significant and subtle land cover changes over time. In this study, the LANDSAT TM data was used to detect the change areas affected by flood from a heavy rainfall. The study area is the Nakdong River located in the Korea peninsular. Among the several change detection techniques, change vector analysis(CVA), principle component analysis(PCA) and image difference approach are utilized in this paper. CVA uses any number of spectral bands from multi-date satellite data to produce change image that yield information of the magnitude and direction of differences pixel values. And accuracy assessment was carried out with a change image produced from three techniques. In result, CVA was found to be the most accurate for detecting areas affected by flood. CVA with the overall accuracy and Kappa coefficient of 97.27 percent and 94.45 percent, respectively.

  • PDF

Operation Technique of Spatial Data Change Recognition Data per File (파일 단위 공간데이터 변경 인식 데이터 운영 기법)

  • LEE, Bong-Jun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.4
    • /
    • pp.184-193
    • /
    • 2021
  • The system for managing spatial data updates the existing information by extracting only the information that is different from the existing information for the newly obtained spatial information file to update the stored information. In order to extract only objects that have changed from existing information, it is necessary to compare whether there is any difference from existing information for all objects included in the newly obtained spatial information file. This study was conducted to improve this total inspection method in a situation where the amount of spatial information that is frequently updated increases and data update is required at the national level. In this study, before inspecting individual objects in a new acquisition space information file, a method of determining whether individual space objects have been changed only by the information in the file was considered. Spatial data files have structured data characteristics different from general image or text document files, so it is possible to determine whether to change the file unit in a simpler way compared to the existing method of creating and managing file hash. By reducing the number of target files that require full inspection, it is expected to improve the use of resources in the system by saving the overall data quality inspection time and saving data extraction time.

Object-based Change Detection using Various Pixel-based Change Detection Results and Registration Noise (다양한 화소기반 변화탐지 결과와 등록오차를 이용한 객체기반 변화탐지)

  • Jung, Se Jung;Kim, Tae Heon;Lee, Won Hee;Han, You Kyung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.6
    • /
    • pp.481-489
    • /
    • 2019
  • Change detection, one of the main applications of multi-temporal satellite images, is an indicator that directly reflects changes in human activity. Change detection can be divided into pixel-based change detection and object-based change detection. Although pixel-based change detection is traditional method which is mostly used because of its simple algorithms and relatively easy quantitative analysis, applying this method in VHR (Very High Resolution) images cause misdetection or noise. Because of this, pixel-based change detection is less utilized in VHR images. In addition, the sensor of acquisition or geographical characteristics bring registration noise even if co-registration is conducted. Registration noise is a barrier that reduces accuracy when extracting spatial information for utilizing VHR images. In this study object-based change detection of VHR images was performed considering registration noise. In this case, object-based change detection results were derived considering various pixel-based change detection methods, and the major voting technique was applied in the process with segmentation image. The final object-based change detection result applied by the proposed method was compared its performance with other results through reference data.