• Title/Summary/Keyword: Spatial Statistical Models

Search Result 129, Processing Time 0.033 seconds

A Penalized Spline Based Method for Detecting the DNA Copy Number Alteration in an Array-CGH Experiment

  • Kim, Byung-Soo;Kim, Sang-Cheol
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.1
    • /
    • pp.115-127
    • /
    • 2009
  • The purpose of statistical analyses of array-CGH experiment data is to divide the whole genome into regions of equal copy number, to quantify the copy number in each region and finally to evaluate its significance of being different from two. Several statistical procedures have been proposed which include the circular binary segmentation, and a Gaussian based local regression for detecting break points (GLAD) by estimating a piecewise constant function. We propose in this note a penalized spline regression and its simultaneous confidence band(SCB) approach to evaluate the statistical significance of regions of genetic gain/loss. The region of which the simultaneous confidence band stays above 0 or below 0 can be considered as a region of genetic gain or loss. We compare the performance of the SCB procedure with GLAD and hidden Markov model approaches through a simulation study in which the data were generated from AR(1) and AR(2) models to reflect spatial dependence of the array-CGH data in addition to the independence model. We found that the SCB method is more sensitive in detecting the low level copy number alterations.

Application of Generalized Maximum Entropy Estimator to the Two-way Nested Error Component Model with III-Posed Data

  • Cheon, Soo-Young
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.4
    • /
    • pp.659-667
    • /
    • 2009
  • Recently Song and Cheon (2006) and Cheon and Lim (2009) developed the generalized maximum entropy(GME) estimator to solve ill-posed problems for the regression coefficients in the simple panel model. The models discussed consider the individual and a spatial autoregressive disturbance effects. However, in many application in economics the data may contain nested groupings. This paper considers a two-way error component model with nested groupings for the ill-posed data and proposes the GME estimator of the unknown parameters. The performance of this estimator is compared with the existing methods on the simulated dataset. The results indicate that the GME method performs the best in estimating the unknown parameters in terms of its quality when the data are ill-posed.

Statistical Approach to Groundwater Recharge Rate Estimation for Non-Measured Areas of Water Levels (미계측 지역 지하수 함양량 추정을 위한 통계적 접근)

  • Kim, Gyoobum;Kim, Kiyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.7
    • /
    • pp.73-85
    • /
    • 2008
  • 320 national groundwater monitoring stations have been constructed since 1995 and groundwater levels are measured automatically 4 times a day at each well. It has a difficulty to estimate an average recharge rate of watershed using the recharge rate of the monitoring site because of the lack of its representative on converting a point recharge rate into a spatial one. In this study, the relations between site characteristics (topography, hydraulics, geology, facilities, etc.) and recharge rates of 223 monitoring sites, which were selected using cluster analysis, were analyzed using statistical methods, and finally, regression models were constructed for a recharge rate estimation of non-measured areas. The independent variables for these simple regression models, 1) width of adjacent stream, 2) distance to the nearest stream, 3) topographic slope, and 4) rock type, are proposed using analysis of variance. These models have lots of advantages such as an easy data collection from topographic and geologic maps, a few input variables, and also simplicity in use. Suitability analysis from the comparison between estimation values and original ones at monitoring sites shows that these models are useful for a groundwater recharge estimation.

  • PDF

Analysis of Total Crime Count Data Based on Spatial Association Structure (공간적 연관구조를 고려한 총범죄 자료 분석)

  • Choi, Jung-Soon;Park, Man-Sik;Won, Yu-Bok;Kim, Hag-Yeol;Heo, Tae-Young
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.2
    • /
    • pp.335-344
    • /
    • 2010
  • Reliability of the estimation is usually damaged in the situation where a linear regression model without spatial dependencies is employed to the spatial data analysis. In this study, we considered the conditional autoregressive model in order to construct spatial association structures and estimate the parameters via the Bayesian approaches. Finally, we compared the performances of the models with spatial effects and the ones without spatial effects. We analyzed the yearly total crime count data measured from each of 25 districts in Seoul, South Korea in 2007.

Accurate Spatial Information Mapping System Using MMS LiDAR Data (MMS LiDAR 자료 기반 정밀 공간 정보 매핑 시스템)

  • CHOUNG, Yun-Jae;CHOI, Hyeoung-Wook;PARK, Hyeon-Cheol
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.1
    • /
    • pp.1-11
    • /
    • 2018
  • Mapping accurate spatial information is important for constructing three-dimensional (3D) spatial models and managing artificial facilities, and, especially, mapping road centerlines is necessary for constructing accurate road maps. This research developed a semi-automatic methodology for mapping road centerlines using the MMS(Mobile Mapping System) LiDAR(Light Detection And Ranging) point cloud as follows. First, the intensity image was generated from the given MMS LiDAR data through the interpolation method. Next, the line segments were extracted from the intensity image through the edge detection technique. Finally, the road centerline segments were manually selected among the extracted line segments. The statistical results showed that the generated road centerlines had 0.065 m overall accuracy but had some errors in the areas near road signs.

Comparative Evaluation among Different Kriging Techniques applied to GOSAT CO2 Map for North East Asia (GOSAT 기반의 동북아시아 CO2 분포도에 적용된 크리깅 기법의 비교평가)

  • Choi, Jin Ho;Um, Jung-Sup
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.6
    • /
    • pp.879-890
    • /
    • 2011
  • The GOSAT (Greenhouse gases Observing SATellite) data provide new opportunities the most regionally complete and up-to-date assessment of $CO_2$. However, in practice, GOSAT records often suffer from missing data values mainly due to unfavorable meteorological condition in specific time periods of data acquisition. The aim of this research was to identify optimal spatial interpolation techniques to ensure the continuity of $CO_2$ from samples taken in the North East Asia. The accuracy among ordinary kriging (OK), universal kriging (UK) and simple kriging (SK) was compared based on the combined consideration of $R^2$ values, Root Mean Square Error (RMSE), Mean Error (ME) for variogram models. Cross validation for 1312 random sampling points indicate that the (UK) kriging is the best geostatistical method for spatial predictions of $CO_2$ in the East Asia region. The results from this study can be useful for selecting optimal kriging algorithm to produce $CO_2$ map of various landscapes. Also, data users may benefit from a statistical approach that would allow them to better understand the uncertainty and limitations of the GOSAT sample data.

Temporal and Spatial Variation of Soil Moisture in Upland Soil using AMSR2 SMC

  • Na, Sang-Il;Lee, Kyoung-Do;Kim, Sook-Kyoung;Hong, Suk-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.6
    • /
    • pp.658-665
    • /
    • 2015
  • Temporal and spatial variation of soil moisture is important for understanding patterns of climate change, for developing and evaluating land surface models, for designing surface soil moisture observation networks, and for determining the appropriate resolution for satellite-based remote sensing instruments for soil moisture. In this study, we measured several soil moistures in upland soil using Advanced Microwave Scanning Radiometer 2 (AMSR2) Soil Moisture Content (SMC) during eight-month period in Chungbuk province. The upland soil moisture properties were expressed by simple statistical methods (average, standard deviation and coefficient of variation) from the monthly context. Supplementary studies were also performed about the effect of top soil texture on the soil moisture responses. If the results from this study were utilized well in specific cities and counties in Korea, it would be helpful to establish the countermeasures and action plans for preventing disasters because it was possible to compare with the relationship between soil moisture and top soil texture of each region. And it would be the fundamental data for estimating the effect of future agricultural plan.

Forecasting Brown Planthopper Infestation in Korea using Statistical Models based on Climatic tele-connections (기후 원격상관 기반 통계모형을 활용한 국내 벼멸구 발생 예측)

  • Kim, Kwang-Hyung;Cho, Jeapil;Lee, Yong-Hwan
    • Korean journal of applied entomology
    • /
    • v.55 no.2
    • /
    • pp.139-148
    • /
    • 2016
  • A seasonal outlook for crop insect pests is most valuable when it provides accurate information for timely management decisions. In this study, we investigated probable tele-connections between climatic phenomena and pest infestations in Korea using a statistical method. A rice insect pest, brown planthopper (BPH), was selected because of its migration characteristics, which fits well with the concept of our statistical modelling - utilizing a long-term, multi-regional influence of selected climatic phenomena to predict a dominant biological event at certain time and place. Variables of the seasonal climate forecast from 10 climate models were used as a predictor, and annual infestation area for BPH as a predictand in the statistical analyses. The Moving Window Regression model showed high correlation between the national infestation trends of BPH in South Korea and selected tempo-spatial climatic variables along with its sequential migration path. Overall, the statistical models developed in this study showed a promising predictability for BPH infestation in Korea, although the dynamical relationships between the infestation and selected climatic phenomena need to be further elucidated.

Precipitation Analysis Based on Spatial Linear Regression Model (공간적 상관구조를 포함하는 선형회귀모형을 이용한 강수량 자료 분석)

  • Jung, Ji-Young;Jin, Seo-Hoon;Park, Man-Sik
    • The Korean Journal of Applied Statistics
    • /
    • v.21 no.6
    • /
    • pp.1093-1107
    • /
    • 2008
  • In this study, we considered linear regression model with various spatial dependency structures in order to make more reliable prediction of precipitation in South Korea. The prediction approaches are based on semi-variogram models fitted by least-squares estimation method and restricted maximum likelihood estimation method. We validated some candidate models from the two different estimation methods in terms of cross-validation and comparison between predicted values and observed values measured at different locations.

Quantification of future climate uncertainty over South Korea using eather generator and GCM

  • Tanveer, Muhammad Ejaz;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.154-154
    • /
    • 2018
  • To interpret the climate projections for the future as well as present, recognition of the consequences of the climate internal variability and quantification its uncertainty play a vital role. The Korean Peninsula belongs to the Far East Asian Monsoon region and its rainfall characteristics are very complex from time and space perspective. Its internal variability is expected to be large, but this variability has not been completely investigated to date especially using models of high temporal resolutions. Due to coarse spatial and temporal resolutions of General Circulation Models (GCM) projections, several studies adopted dynamic and statistical downscaling approaches to infer meterological forcing from climate change projections at local spatial scales and fine temporal resolutions. In this study, stochastic downscaling methodology was adopted to downscale daily GCM resolutions to hourly time scale using an hourly weather generator, the Advanced WEather GENerator (AWE-GEN). After extracting factors of change from the GCM realizations, these were applied to the climatic statistics inferred from historical observations to re-evaluate parameters of the weather generator. The re-parameterized generator yields hourly time series which can be considered to be representative of future climate conditions. Further, 30 ensemble members of hourly precipitation were generated for each selected station to quantify uncertainty. Spatial map was generated to visualize as separated zones formed through K-means cluster algorithm which region is more inconsistent as compared to the climatological norm or in which region the probability of occurrence of the extremes event is high. The results showed that the stations located near the coastal regions are more uncertain as compared to inland regions. Such information will be ultimately helpful for planning future adaptation and mitigation measures against extreme events.

  • PDF