• 제목/요약/키워드: Spatial Statistical Method

검색결과 364건 처리시간 0.027초

의사우도법을 이용한 공간 종속 모형의 추정 (Estimation of Spatial Dependence by Quasi-likelihood Method)

  • 이윤동;최혜미
    • 응용통계연구
    • /
    • 제17권3호
    • /
    • pp.519-533
    • /
    • 2004
  • 본 연구에서는 베리오그램 추정을 통한 공간 종속성 추정방법에 있어서 의사우도 사용 방법을 설명하고, 모의실험을 통하여 전통적으로 사용되는 다른 방법들과 그 특성을 비교하고자 한다. 의사우도를 이용한 공간 종속 추정방법들은 그 통계적 성질이 우수할 뿐만 아니라, 전통적인 방법들에서 요구되어지는 관측치가 갖는 래그(lag)들을 미리 지정된 래그로 그룹화하는 과정이 필요 없어서 활용상의 우수성도 함께 가지고 있다. 또한, 이 방법에 대한 로버스트 방법을 개발하고 그 특성을 알아보고자 한다.

Estimation of Spatial Dependence with GEE

  • Lee, Yoon-Dong;Choi, Hye-Mi
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2003년도 춘계 학술발표회 논문집
    • /
    • pp.269-273
    • /
    • 2003
  • We consider an efficient parametric estimation method of spatial dependence in weak stationary processes. Spatial dependence is modeled through variogram and correlogram. Most of parametric estimation methods of correlogram use two step method; nonparametric estimation and parametric integration. We bind these two steps into one step by using GEE method instead of least squares type optimization. Our one step method is more efficient statistically and gives a clear interpretation of related concepts used in traditional two step methods.

  • PDF

GIS와 공간통계기법을 활용한 도시쇠퇴 특성 분석 - 광주광역시를 중심으로 - (Analysis on the Characteristics of Urban Decline Using GIS and Spatial Statistical Method : The Case of Gwangju Metropolitan City)

  • 장문현
    • 한국지역지리학회지
    • /
    • 제22권2호
    • /
    • pp.424-438
    • /
    • 2016
  • 도시쇠퇴와 공동화 현상을 방지하고 침체된 지역경제를 활성화시키기 위한 새로운 도시재생 패러다임이 등장하고 있다. 본 연구는 도시재생특별법에 제시된 쇠퇴기준과 공간자기상관 탐색을 기반으로 GIS 및 공간통계기법을 활용하여 도시쇠퇴 특성을 분석하는데 그 목적을 두고 있다. 광주광역시를 대상으로 하여 도시재생특별법에 제시된 쇠퇴 기준인 인구감소, 사업체감소, 노후건축물에 관한 지표를 적용함으로써 객관성을 확보하고자 하였다. 특히 GIS와 공간 통계기법을 적용함에 있어서 공간자기상관 탐색을 통해 도시쇠퇴 특성을 분석한다는 점에서 기존의 연구와 차별성을 지닌다. 전체적인 분석과정은 도시활성화지역 지정 기준을 원용하고, 공간탐색적 절차에 따라 단계적으로 추진하였다. 따라서 본 연구를 통해 제시된 공간통계분석 절차 및 도시쇠퇴 특성 분석의 결과는 대도시권 수준에서 도시쇠퇴 진단에 기여하고, 도시재생과 관련한 공간의사결정에 유용한 정보를 제공할 것으로 기대한다.

  • PDF

On a Modified k-spatial Medians Clustering

  • Jhun, Myoungshic;Jin, Seohoon
    • Journal of the Korean Statistical Society
    • /
    • 제29권2호
    • /
    • pp.247-260
    • /
    • 2000
  • This paper is concerned with a modification of the k-spatial medians clustering. To find a suitable number of clusters, the number k of clusters is incorporated into the k-spatial medians clustering criterion through a weight function. Proposed method for the choice of the weight function offers a reasonable number of clusters. Some theoretical properties of the method are investigated along with some examples.

  • PDF

공간 격자데이터 분석에 대한 우위성 비교 연구 - 이상치가 존재하는 경우 - (A Comparative Study on Spatial Lattice Data Analysis - A Case Where Outlier Exists -)

  • 김수정;최승배;강창완;조장식
    • Communications for Statistical Applications and Methods
    • /
    • 제17권2호
    • /
    • pp.193-204
    • /
    • 2010
  • 최근들어 공간적으로 분석을 필요로 하는 여러 분야에서의 연구자들은 공간통계학에 많은 관심을 가지게 되었다. 그리고 통계학 분야 역시 공간상에서 얻어진 데이터에 공간자기상관이 존재할 경우 공간적으로 분석해야 한다는 주장과 함께 많은 연구가 진행되고 있다. 공간통계학에서 다루고 있는 데이터 중에서 '공간 격자데이터 분석'은 (1) 공간이웃의 정의, (2) 공간이웃 가중치의 정의, (3) 공간모형의 적용 등의 단계를 거쳐서 행해진다. 본 연구에서는 이상치가 존재하는 공간 격자데이터를 분석할 경우 절사평균제곱오차를 이용하여 분석함으로써 예측적인 측면에서 공간통계학적 방법이 일반통계학적 방법보다 더 우수함을 보인다. 본 연구에 대한 내용의 타당성을 보이기 위해서 시뮬레이션을 통하여 공간통계학적인 방법과 일반통계학적인 방법을 비교하였다. 그리고 부산진구의 실제 범죄데이터를 이용한 적용사례를 통하여 절사평균제곱오차를 사용한 공간통계학적 방법의 유용성을 알아보았다.

Spatial Data Analysis using the Kriging Method

  • Jang, Jihui;Hong, Taekyong;NamKung, Pyong
    • Communications for Statistical Applications and Methods
    • /
    • 제10권2호
    • /
    • pp.423-432
    • /
    • 2003
  • The data observed at different positions are called the estimate of interested variable at new observation point on the Kriging utilize the space estimate technique, in which case there is correlation spatially. In this paper we provide the estimate for Variogram and Kriging methods as a field of kriging theory and dealt with actually measured data. And at the same time we forecast the amount of ozone that was not measured at this point by Kriging method and compared Ordinary Kriging method with Inverse Distance Kriging method.

한반도 미래 기온 변화 예측을 위한 ECHO-G/S 시나리오의 통계적 상세화에 관한 연구 (A Study on Statistical Downscaling for Projection of Future Temperature Change simulated by ECHO-G/S over the Korean Peninsula)

  • 신진호;이효신;권원태;김민지
    • 대기
    • /
    • 제19권2호
    • /
    • pp.107-125
    • /
    • 2009
  • Statistical downscaled surface temperature datasets by employing the cyclostationary empirical orthogonal function (CSEOF) analysis and multiple linear regression method are examined. For evaluating the efficiency of this statistical downscaling method, monthly surface temperature of the ECMWF has been downscaled into monthly temperature having a fine spatial scale of ~20km over the Korean peninsula for the 1973-2000 period. Monthly surface temperature of the ECHOG has also been downscaled into the same spatial scale data for the same period. Comparisons of temperatures between two datasets over the Korean peninsula show that annual mean temperature of the ECMWF is about $2^{\circ}C$ higher than that of the ECHOG. After applying to the statistical downscaling method, the difference of two annual mean temperatures reduces less than $1^{\circ}C$ and their spatial patterns become even close to each other. Future downscaled data shows that annual temperatures in the A1B scenario will increase by $3.5^{\circ}C$ by the late 21st century. The downscaled data are influenced by the ECHOG as well as observation data which includes effects of complicated topography and the heat island.

통계적 공간상세화 기법의 시공간적 강우분포 재현성 비교평가 (Comparative Evaluation of Reproducibility for Spatio-temporal Rainfall Distribution Downscaled Using Different Statistical Methods)

  • 정임국;황세운;조재필
    • 한국농공학회논문집
    • /
    • 제65권1호
    • /
    • pp.1-13
    • /
    • 2023
  • Various techniques for bias correction and statistical downscaling have been developed to overcome the limitations related to the spatial and temporal resolution and error of climate change scenario data required in various applied research fields including agriculture and water resources. In this study, the characteristics of three different statistical dowscaling methods (i.e., SQM, SDQDM, and BCSA) provided by AIMS were summarized, and climate change scenarios produced by applying each method were comparatively evaluated. In order to compare the average rainfall characteristics of the past period, an index representing the average rainfall characteristics was used, and the reproducibility of extreme weather conditions was evaluated through the abnormal climate-related index. The reproducibility comparison of spatial distribution and variability was compared through variogram and pattern identification of spatial distribution using the average value of the index of the past period. For temporal reproducibility comparison, the raw data and each detailing technique were compared using the transition probability. The results of the study are presented by quantitatively evaluating the strengths and weaknesses of each method. Through comparison of statistical techniques, we expect that the strengths and weaknesses of each detailing technique can be represented, and the most appropriate statistical detailing technique can be advised for the relevant research.

공간시계열 모형의 칼만필터 추정과 예측 (Kalman-Filter Estimation and Prediction for a Spatial Time Series Model)

  • 이성덕;한은희;김덕기
    • Communications for Statistical Applications and Methods
    • /
    • 제18권1호
    • /
    • pp.79-87
    • /
    • 2011
  • 공간적, 시간적으로 퍼져나가는 전염성이 강한 질병인 수두자료를 이용하여 공간 시계열 자료를 분석하는데 있어 일반적으로 알려진 ARIMA 모형에 적합하여 분석을 행하면 공간적인 정보를 반영하지 못하기 때문에 기존에 시간만을 고려한 시계열 분석방법에 공간통계의 공간적 정보를 반영한 공간시계열 모형을 고려한다. 공간시계열 모형에서 공간의 위치 및 영향은 시계열 모형에 공간적 정보로써 가중치행렬을 더 함으로써 처리 가능해진다. 가중치행렬은 지리적으로 인접한 지역일수록 공간의존도가 높다는 것을 반영한 것이며 공간시계열 모형의 연구에서 가중치행렬은 인접한 지역들은 동일한 영향을 줄 것이라 가정하였다. 따라서 본 논문에서는 공간시계열 모형인 STARMA 모형과 STBL 모형에 대한 식별방법, 통계적 추론 및 예측력 비교에 대해 연구하였고 특히, 모수추정의 알고리즘 비교와 공간시계열 모형의 예측력 비교를 통해 Kalman-Filter 방법의 우수성을 보이고자 한다.

격자 기반의 통계정보 표현을 위한 데이터 변환 방법 (A Data Transformation Method for Visualizing the Statistical Information based on the Grid)

  • 김문수;이지영
    • Spatial Information Research
    • /
    • 제23권5호
    • /
    • pp.31-40
    • /
    • 2015
  • 본 논문에서는 다양한 형태로 존재하는 통계정보를 일정한 모양과 크기를 갖는 격자로 표현하기 위해 필요한 데이터 변환 방법론에 대하여 제시한다. 격자는 기존 통계지도 서비스에서 활용하고 있는 통계공간단위인 행정구역과 집계구와 비교하였을 때 모양과 크기가 일정하여 통계정보를 객관적으로 파악할 수 있게 하며, 지도 축척 변화에 유연하게 적용될 수 있는 특징이 있다. 한편, 기존 통계지도 서비스에서는 면 보간법을 활용하여 통계공간단위로 변환하고 있는데, 이것을 다양한 형태로 존재하는 통계정보에 적용시키기 위해서는 추가적인 프로세스가 필요하다. 이에 따라, 본 논문에서는 다양한 형태로 존재하는 통계정보의 격자 변환을 위해 1)지오코딩을 통한 공간데이터로의 변환, 2)공간 관계 정의를 통한 위치정보 변환, 3)데이터 척도를 고려한 속성정보 변환을 수행하는 방법론을 정리하였다. 제시한 방법론은 서울시 A지역의 인구 밀도 통계정보를 격자로 변환하기 위해 적용하였다. 특히, 동일한 통계정보를 표현하는 참조데이터가 서로 다르더라도 유사한 격자 표현이 가능해야 함을 검증하기 위해 공간 자기상관성을 통해 분석하였다. 그 결과, 집계구와 건물을 통해 표현되는 인구 밀도를 각각 격자로 변환하였을 때, 두 데이터 모두 유사한 격자 분포를 표현함을 파악할 수 있었다. 이러한 결과를 통해 본 연구에서 제안하는 방법론은 일관된 결과를 표현할 수 있음을 확인하였다.