• Title/Summary/Keyword: Spatial Sound

Search Result 262, Processing Time 0.029 seconds

Solution for Spatial Sound Realization in MIDI Specification

  • Cho, Sang-Jin;Ovcharenko, Alexander;Chae, Jin-Wook;Chong, Ui-Pil
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2005.11a
    • /
    • pp.274-277
    • /
    • 2005
  • Panning is the way in which to realize a spatial sound in MIDI by moving sound images by the loudness of each channel. However, there is a limitation for the natural spatial sound. The HRTF (Head Related Transfer Function) has been widely known as one of the ways to realize spatial sound using the two channels, but it needs much processing power. It is very hard to implement a real time processing structure. In this paper, we propose an improved 3D sound model for the spatial sound location by changing the acoustic parameters. We could get a good result from the experiment with MIDI Pan and our Model.

  • PDF

Sound visualization in time domain by using spatial envelope (공간 포락을 적용한 시간 영역 음장 가시화)

  • Park, Choon-Su;Kim, Yang-Hann
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.33-36
    • /
    • 2007
  • Acoustic holography exhibits the spatial distribution of sound pressure in time or frequency domain. The obtained picture often contains far more than what we need in practice. For example, when we need to know only the locations and overall propagation pattern of sound sources, a method to show only what we need has to be introduced. One way of obtaining the necessary information is to use envelope in space. The spatial envelope is a spatially slowly-varying amplitude of acoustic waves which contains the information of sources' location. A spatial modulation method has been theoretically developed to get a spatial envelope. By applying the spatial envelope, not only the necessary information is obtained but also computation time is reduced during the process of holography. The spatial envelope is verified as an effective visualization scheme in time domain by being applied to complicated sound fields.

  • PDF

Design of Multichannel Spherical Loudspeaker Array for the Spatial Sound Manipulation (소리의 공간 제어를 위한 구형 다채널 스피커 어레이 설계)

  • Kang, Dong-Soo;Choi, Jung-Woo;Lee, Jung-Min;Kim, Yang-Hann
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.4
    • /
    • pp.214-224
    • /
    • 2012
  • The objective of this paper is to design multichannel spherical loudspeaker array by considering various positioning methods such as Gaussian grid, Lebedev grid and packing method. For the spatial sound manipulation, which is to make desired sound field by controling multiple sound sources, the Kirchhoff- Helmholtz integral states that sound fields can be reproduced in terms of infinite control sources on the integral surface. But since we cannot control infinite number of sources for the implementation, we have to allocate finite number of sound sources which can approximately act as infinite number of sources. To manipulate sound field inside of a sphere (which is typical example of three dimensional array) by controlling sound sources on the surface, three methods of allocating sound sources, which are Gaussian grid, Lebedev grid and packing method, are reviewed. For each geometry, the performances of manipulation rendered by time-reversal operator and higher-order ambisonics are compared.

A Study on Multichannel Format Conversion and Representation of Spatial Sound Information (다채널 포맷 변환과 공간적인 입체 음향 정보의 효과적인 유지에 대한 연구)

  • Jeon, Se-Woon;Park, Young-Cheol;Youn, Dae-Hee
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.5
    • /
    • pp.34-44
    • /
    • 2010
  • In this study, the algorithms for multichannel format conversion and robust representation of spatial sound information are proposed. In the spatial analysis, the directional information of sound source is estimated and sound sources are separated from stereo signal. In the spatial resynthesis, the multichannel matrixing with spatial repanning and post-scaling method are applied to represent a spatial sound. The conventional method about channel format conversion has the problem that the energy of sound source and the spatial information are not preserved in the desired channel format. Because the proposed method is designed in consideration of the target multichannel format and its resynthesized signal, the robust representation of spatial sound can be achieved in the multichannel format conversion.

Evaluation of Sound Quality for Urban Environmental Sound (도시 환경음의 음질 평가)

  • Park, Hyeon-Ku;Shin, Yong-Gyu;Kim, Hang;Song, Min-Jeong;Kim, Sun-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.529-534
    • /
    • 2005
  • This study performed an physical analysis on the characteristics of urban environmental sound divided into three parts depending on their features. Object sounds were classified into traffic sound, waster sound and spatial sound. Traffice sound was selected because it is dominant sound in urban environment, and water sound is selected because it generally supplies pleasantness in contrast to traffic sound, Finally spatial sound was considered because it represents sound in various places of city having lots of behaviors and types of sound due to them. Physcal analysis was carried out using sound quality indices based on Zwicker's loudness, $L_{Aeq}$(equivalent noise level), Ln(percentile noise level) and other acoutical attributes applied to previous study. Through the analysis, this study aims to compare the acoustical characteristics of urban environmental sound and to provide fundamental data for the evaluation of urban environmental sound.

  • PDF

Measurement of the Average Speed of Ultrasound and Implementation of Its Imaging Using Compounding Technique in Medical Ultrasound Imaging (초음파 의료영상에서 컴파운딩 기법을 이용한 초음파의 평균 음속도의 측정과 음속도 영상의 구현)

  • Jeong, Mok-Kun;Kwon, Sung-Jae;Choi, Min-Joo
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.3
    • /
    • pp.233-240
    • /
    • 2009
  • Using a spatial compound imaging technique in a medical ultrasound imaging system, the average speed of sound in a medium of interest is measured, and imaging of its distribution is implemented. When the brightness reaches the highest level in an ultrasonic image obtained as the speed of sound used in focusing is varied, it turns out that the focusing has been accomplished satisfactorily and that the speed of sound which has been adopted becomes the sought-after average speed of sound. Because spatial compound imaging provides many different views of the same object, the adverse effect of erroneous speed-of-sound estimation tends to be more severe in compound imaging than in plain B-mode imaging. Thus, in compound imaging, the average speed of sound even in the case of speckled images can be accurately estimated by observing the brightness change due to different speeds of sound employed. Using this new method that offers spatial diversity, we can construct an image of the speed of sound distribution in a phantom embedded with a 10-mm diameter plastic cylinder whose speed of sound is different from that of the background. The speed of sound in the cylinder is found to be different from that of the surrounding medium.

Analysis of the Sound Source Field Using Spatial Transformation of the Sound Pressure in a Near-field (근거리 음압의 공간 변환에 의한 음원의 음장 분포 해석)

  • 김원호;윤종락
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.8
    • /
    • pp.660-669
    • /
    • 2003
  • This paper describes a theory to calculate sound source field from the spatial transform of sound field and the measured cross-power spectrum of sound pressure over a hologram plane close to a sound source, Calculating method is proposed to solve sound pressures from cross-power spectrums over a hologram plane, For this, Taylor series for the nonlinear equations is expanded, and it is calculated using Newton-Raphon method, Also, a wave number filter is used to reduce errors that is occurred on the backward propagation, and is performed numerical simulation of the circular piston sound source with infinite baffle in water to verify the proposed theory.

Study on method of build up low-frequency diffuse sound field in a scaled reverberation chamber (축소잔향실의 저주파수 확산음장 형성 방법에 대한 연구)

  • Kang, Jun-Goo;Kang, Hyun-Ju;Kim, Sang-Ryul;Choi, Jong-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.61-64
    • /
    • 2007
  • This study is dealt with a method to enhance low-frequency diffuse sound field in a scaled reverberation chamber. Because scaled reverberation chamber has not enough room volume, as a result, it shows a few room modes. So it is not build up low-frequency diffuse sound field. A Helmholtz resonator's arrangement is used to improve spatial uniformity of sound pressure at low frequency. The spatial distribution of sound field has been measured before and after control. The standard deviation of sound field has decreased at 315Hz 1/3 Octave band.

  • PDF

Research for Characteristic of Directional Sound Image Idealization at Stereo System Using Different Phase Pure Tone (순음의 위상차를 이용한 스테레오 시스템에서의 음상 정위 특성 연구)

  • 한찬호;이법기;정원식;고일석;최영수
    • The Journal of the Korea Contents Association
    • /
    • v.2 no.1
    • /
    • pp.32-38
    • /
    • 2002
  • In the AV system, stereophonic system has been studied to produce a realistic sound effect. The width of stereo AV system speakers is narrow, to have the spatial impression of sound effect, widening the sound image is necessary. The direction of sound image depends on the phase delay and the sound pressure level difference between two channels. In this paper, we analyze the relationship between the phase delay and the direction of the sound image relating to the frequency of sound source. Also we experimented to directionally localize the sound image of the pure tone with shifting phases and controling sound pressure love between two channels when the sound is reproduced by two speakers to make a spatial impression of sound effect.

  • PDF

Sound Visualization in Time Domain by Using Spatial Envelope (공간 포락을 적용한 시간 영역 음장 가시화)

  • Park, Choon-Su;Kim, Yang-Hann
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.1
    • /
    • pp.20-25
    • /
    • 2008
  • Acoustic holography exhibits the spatial distribution of sound pressure in time or frequency domain. The obtained picture often contains far more than what we need in practice. For example. when we need to know only the locations and overall propagation pattern of sound sources. a method to show only what we need has to be introduced. One way of obtaining the necessary information is to use envelope in space. The spatial envelope is a spatially slowly-varying amplitude of acoustic waves which contains the information of sources' location. A spatial modulation method has been theoretically developed to get a spatial envelope. By applying the spatial envelope. not only the necessary information is obtained but also computation time is reduced during the process of holography. The spatial envelope is verified as an effective visualization scheme in time domain by being applied to complicated sound fields.