• Title/Summary/Keyword: Spatial Prediction

Search Result 945, Processing Time 0.029 seconds

Study on Relationship Between Spatial-Perceptual Ability and Driving-Related Situation Awareness (공간지각 능력에 따른 운전-관련 상황의 재인 및 예측에 관한 연구)

  • Bia Kim ;Jaesik Lee
    • Korean Journal of Culture and Social Issue
    • /
    • v.11 no.4
    • /
    • pp.83-95
    • /
    • 2005
  • The purpose of the present study was to investigate the relationship between spatial-erceptual ability and several aspects of driving-related situation awareness(in particular, recognition and prediction). Video clips of real driving were used in both recognition and prediction tasks, and the digit calculation task during driving the simulator was required as the integration task of recognition and prediction. The results showed that the subjects of higher spatial-perceptual ability performed better in recognition task, especially in terms of sensitivity measured in d'(as signal detection theory), prediction task, and digits calculation performance than those of lower spatial-perceptual ability.

Life Risk Assessment of Landslide Disaster Using Spatial Prediction Model (공간 예측 모델을 이용한 산사태 재해의 인명 위험평가)

  • Jang, Dong-Ho;Chung, C.F.
    • Journal of Environmental Impact Assessment
    • /
    • v.15 no.6
    • /
    • pp.373-383
    • /
    • 2006
  • The spatial mapping of risk is very useful data in planning for disaster preparedness. This research presents a methodology for making the landslide life risk map in the Boeun area which had considerable landslide damage following heavy rain in August, 1998. We have developed a three-stage procedure in spatial data analysis not only to estimate the probability of the occurrence of the natural hazardous events but also to evaluate the uncertainty of the estimators of that probability. The three-stage procedure consists of: (i)construction of a hazard prediction map of "future" hazardous events; (ii) validation of prediction results and estimation of the probability of occurrence for each predicted hazard level; and (iii) generation of risk maps with the introduction of human life factors representing assumed or established vulnerability levels by combining the prediction map in the first stage and the estimated probabilities in the second stage with human life data. The significance of the landslide susceptibility map was evaluated by computing a prediction rate curve. It is used that the Bayesian prediction model and the case study results (the landslide susceptibility map and prediction rate curve) can be prepared for prevention of future landslide life risk map. Data from the Bayesian model-based landslide susceptibility map and prediction ratio curves were used together with human rife data to draft future landslide life risk maps. Results reveal that individual pixels had low risks, but the total risk death toll was estimated at 3.14 people. In particular, the dangerous areas involving an estimated 1/100 people were shown to have the highest risk among all research-target areas. Three people were killed in this area when landslides occurred in 1998. Thus, this risk map can deliver factual damage situation prediction to policy decision-makers, and subsequently can be used as useful data in preventing disasters. In particular, drafting of maps on landslide risk in various steps will enable one to forecast the occurrence of disasters.

Inter-layer Texture and Syntax Prediction for Scalable Video Coding

  • Lim, Woong;Choi, Hyomin;Nam, Junghak;Sim, Donggyu
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.6
    • /
    • pp.422-433
    • /
    • 2015
  • In this paper, we demonstrate inter-layer prediction tools for scalable video coders. The proposed scalable coder is designed to support not only spatial, quality and temporal scalabilities, but also view scalability. In addition, we propose quad-tree inter-layer prediction tools to improve coding efficiency at enhancement layers. The proposed inter-layer prediction tools generate texture prediction signal with exploiting texture, syntaxes, and residual information from a reference layer. Furthermore, the tools can be used with inter and intra prediction blocks within a large coding unit. The proposed framework guarantees the rate distortion performance for a base layer because it does not have any compulsion such as constraint intra prediction. According to experiments, the framework supports the spatial scalable functionality with about 18.6%, 18.5% and 25.2% overhead bits against to the single layer coding. The proposed inter-layer prediction tool in multi-loop decoding design framework enables to achieve coding gains of 14.0%, 5.1%, and 12.1% in BD-Bitrate at the enhancement layer, compared to a single layer HEVC for all-intra, low-delay, and random access cases, respectively. For the single-loop decoding design, the proposed quad-tree inter-layer prediction can achieve 14.0%, 3.7%, and 9.8% bit saving.

A Study on Spatial Prediction of Water Quality Constituents Using Spatial Model (공간모형을 이용한 수질오염물질의 공간적 예측 및 평가에 대한 연구)

  • Kang, Taegu;Lee, Hyuk;Kang, Ilseok;Heo, Tae-Young
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.4
    • /
    • pp.409-417
    • /
    • 2014
  • Spatial prediction methods have been useful to determine the variability of water quality in space and time due to difficulties in collecting spatial data across extensive spaces such as watershed. This study compares two kriging methods in predicting BOD concentration on the unmonitored sites in the Geum River Watershed and to assess its predictive performance by leave-one-out cross validation. This study has shown that cokriging method can make better predictions of BOD concentration than ordinary kriging method across the Geum River Watershed. Challenges for the application of cokriging on the spatial prediction of surface water quality involve the comparison of network-distance-based relationship and euclidean-distance-based relationship for the improvement in the predictive performance.

Effects of Uncertain Spatial Data Representation on Multi-source Data Fusion: A Case Study for Landslide Hazard Mapping

  • Park No-Wook;Chi Kwang-Hoon;Kwon Byung-Doo
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.5
    • /
    • pp.393-404
    • /
    • 2005
  • As multi-source spatial data fusion mainly deal with various types of spatial data which are specific representations of real world with unequal reliability and incomplete knowledge, proper data representation and uncertainty analysis become more important. In relation to this problem, this paper presents and applies an advanced data representation methodology for different types of spatial data such as categorical and continuous data. To account for the uncertainties of both categorical data and continuous data, fuzzy boundary representation and smoothed kernel density estimation within a fuzzy logic framework are adopted, respectively. To investigate the effects of those data representation on final fusion results, a case study for landslide hazard mapping was carried out on multi-source spatial data sets from Jangheung, Korea. The case study results obtained from the proposed schemes were compared with the results obtained by traditional crisp boundary representation and categorized continuous data representation methods. From the case study results, the proposed scheme showed improved prediction rates than traditional methods and different representation setting resulted in the variation of prediction rates.

On the Geometric Anisotropy Inherent In Spatial Data (공간자료의 기하학적 비등방성 연구)

  • Go, Hye Ji;Park, Man Sik
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.5
    • /
    • pp.755-771
    • /
    • 2014
  • Isotropy is one of the main assumptions for the ease of spatial prediction (named kriging) based on some covariance models. A lack of isotropy (or anisotropy) in a spatial process necessitates that some additional parameters (angle and ratio) for anisotropic covariance model be obtained in order to produce a more reliable prediction. In this paper, we propose a new class of geometrically extended anisotropic covariance models expressed as a weighted average of some geometrically anisotropic models. The maximum likelihood estimation method is taken into account to estimate the parameters of our interest. We evaluate the performances of our proposal and compare it with an isotropic covariance model and a geometrically anisotropic model in simulation studies. We also employ extended geometric anisotropy to the analysis of real data.

Comparison of Spatio-temporal Fusion Models of Multiple Satellite Images for Vegetation Monitoring (식생 모니터링을 위한 다중 위성영상의 시공간 융합 모델 비교)

  • Kim, Yeseul;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_3
    • /
    • pp.1209-1219
    • /
    • 2019
  • For consistent vegetation monitoring, it is necessary to generate time-series vegetation index datasets at fine temporal and spatial scales by fusing the complementary characteristics between temporal and spatial scales of multiple satellite data. In this study, we quantitatively and qualitatively analyzed the prediction accuracy of time-series change information extracted from spatio-temporal fusion models of multiple satellite data for vegetation monitoring. As for the spatio-temporal fusion models, we applied two models that have been widely employed to vegetation monitoring, including a Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) and an Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM). To quantitatively evaluate the prediction accuracy, we first generated simulated data sets from MODIS data with fine temporal scales and then used them as inputs for the spatio-temporal fusion models. We observed from the comparative experiment that ESTARFM showed better prediction performance than STARFM, but the prediction performance for the two models became degraded as the difference between the prediction date and the simultaneous acquisition date of the input data increased. This result indicates that multiple data acquired close to the prediction date should be used to improve the prediction accuracy. When considering the limited availability of optical images, it is necessary to develop an advanced spatio-temporal model that can reflect the suggestions of this study for vegetation monitoring.

Traffic Flow Prediction with Spatio-Temporal Information Fusion using Graph Neural Networks

  • Huijuan Ding;Giseop Noh
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.88-97
    • /
    • 2023
  • Traffic flow prediction is of great significance in urban planning and traffic management. As the complexity of urban traffic increases, existing prediction methods still face challenges, especially for the fusion of spatiotemporal information and the capture of long-term dependencies. This study aims to use the fusion model of graph neural network to solve the spatio-temporal information fusion problem in traffic flow prediction. We propose a new deep learning model Spatio-Temporal Information Fusion using Graph Neural Networks (STFGNN). We use GCN module, TCN module and LSTM module alternately to carry out spatiotemporal information fusion. GCN and multi-core TCN capture the temporal and spatial dependencies of traffic flow respectively, and LSTM connects multiple fusion modules to carry out spatiotemporal information fusion. In the experimental evaluation of real traffic flow data, STFGNN showed better performance than other models.

Dynamic Caching Routing Strategy for LEO Satellite Nodes Based on Gradient Boosting Regression Tree

  • Yang Yang;Shengbo Hu;Guiju Lu
    • Journal of Information Processing Systems
    • /
    • v.20 no.1
    • /
    • pp.131-147
    • /
    • 2024
  • A routing strategy based on traffic prediction and dynamic cache allocation for satellite nodes is proposed to address the issues of high propagation delay and overall delay of inter-satellite and satellite-to-ground links in low Earth orbit (LEO) satellite systems. The spatial and temporal correlations of satellite network traffic were analyzed, and the relevant traffic through the target satellite was extracted as raw input for traffic prediction. An improved gradient boosting regression tree algorithm was used for traffic prediction. Based on the traffic prediction results, a dynamic cache allocation routing strategy is proposed. The satellite nodes periodically monitor the traffic load on inter-satellite links (ISLs) and dynamically allocate cache resources for each ISL with neighboring nodes. Simulation results demonstrate that the proposed routing strategy effectively reduces packet loss rate and average end-to-end delay and improves the distribution of services across the entire network.

Use of Fuzzy Object Concept in GIS-based Spatial Prediction Model for Landslide Hazard Mapping

  • Park, No-Wook;Chi, Kwang-Hoon
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.123-127
    • /
    • 2002
  • In this paper, we propose spatial prediction model for landslide hazard mapping that can account for the fuzziness of boundaries in thematic maps showing the different environmental impacts, depending on the scales and the resolutions of them. The fuzziness or uncertainty of boundary is represented in favourability function based on fuzzy object concept and the effects of them are quantitatively evaluated with the help of cross validation procedures. To illustrate the proposed schemes, a case study from Boeun, Korea was carried out. As a result, the proposed schemes are helpful to account for intrinsic uncertainties in categorical maps and can be effectively adopted in spatial prediction models for other purposes.

  • PDF