• Title/Summary/Keyword: Spatial Model

Search Result 5,188, Processing Time 0.027 seconds

The Effects of Neighborhood Segmentation on the Adequacy of a Spatial Regression Model (인근지역 범위 설정이 공간회귀모형 적합에 미치는 영향)

  • Lee, Chang Ro;Park, Key Ho
    • Journal of the Korean Geographical Society
    • /
    • v.48 no.6
    • /
    • pp.978-993
    • /
    • 2013
  • It can be advantage as well as disadvantage to use the spatial weight matrix in a spatial regression model; it would benefit from explicitly quantifying spatial relationships between geographical units, but necessarily involve subjective judgment while specifying the matrix. We took Incheon City as a study area and investigated how the fitness of a spatial regression model changed by constructing various spatial weight matrices. In addition, we explored neighborhood segmentation in the study area and analyzed any influence of it on the model adequacy of two basic spatial regression models, i.e., spatial lagged and spatial error models. The results showed that it can help to improve the adequacy of models to specify the spatial weight matrix strictly, that is, interpreting the neighborhood as small as possible when estimating land price. It was also found that the spatial error model would be preferred in the area with serious spatial heterogeneity. In such area, we found that its spatial heterogeneity can be alleviated by delineating sub-neighborhoods, and as a result, the spatial lagged model would be preferred over the spatial error model.

  • PDF

Selection of Spatial Regression Model Using Point Pattern Analysis

  • Shin, Hyun Su;Lee, Sang-Kyeong;Lee, Byoungkil
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.3
    • /
    • pp.225-231
    • /
    • 2014
  • When a spatial regression model that uses kernel density values as a dependent variable is applied to retail business data, a unique model cannot be selected because kernel density values change following kernel bandwidths. To overcome this problem, this paper suggests how to use the point pattern analysis, especially the L-index to select a unique spatial regression model. In this study, kernel density values of retail business are computed by the bandwidth, the distance of the maximum L-index and used as the dependent variable of spatial regression model. To test this procedure, we apply it to meeting room business data in Seoul, Korea. As a result, a spatial error model (SEM) is selected between two popular spatial regression models, a spatial lag model and a spatial error model. Also, a unique SEM based on the real distribution of retail business is selected. We confirm that there is a trade-off between the goodness of fit of the SEM and the real distribution of meeting room business over the bandwidth of maximum L-index.

Three Dimensional Spatial Object Model

  • Lee, Sun-Jun;Kim, Sang-Ho;Lee, Seong-Ho;Chung, Jae-Du;Ryu, Keun-Ho
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.885-890
    • /
    • 2002
  • As Geographic Information Systems represents three-dimensional topological Information, the systems provide accurate and delicate services for user. In order to execute three-dimensional topological operations, a dimensional transformation and heterogeneous spatial models should be used. However, the existing systems that use the dimensional transformation and the heterogeneous models, are not only difficult to operate the spatial operators, but also happened to support non- interoperability. Therefore, in order to support the spatial operation as well as interoperability between dimensions, we propose three-dimensional spatial operators for the proposed models. We defined the three-dimensional spatial operators prior to designing the proposed model. We also implemented the operators of proposed model and evaluated the implemented model on the component environment. Finally, the proposed model is able to not only support interoperability among systems but also execute spatial queries efficiently on three-dimensional spatial objects.

  • PDF

A Spatial Structural Query Language-G/SQL

  • Fang, Yu;Chu, Fang;Xinming, Tang
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.860-879
    • /
    • 2002
  • Traditionally, Geographical Information Systems can only process spatial data in a procedure-oriented way, and the data can't be treated integrally. This method limits the development of spatial data applications. A new and promising method to solve this problem is the spatial structural query language, which extends SQL and provides integrated accessing to spatial data. In this paper, the theory of spatial structural query language is discussed, and a new geographical data model based on the concepts and data model in OGIS is introduced. According to this model, we implemented a spatial structural query language G/SQL. Through the studies of the 9-Intersection Model, G/SQL provides a set of topological relational predicates and spatial functions for GIS application development. We have successfully developed a Web-based GIS system-WebGIS-using G/SQL. Experiences show that the spatial operators G/SQL offered are complete and easy-to-use. The BNF representation of G/SQL syntax is included in this paper.

  • PDF

Knowledge-Based Approach for an Object-Oriented Spatial Database System (지식기반 객체지향 공간 데이터베이스 시스템)

  • Kim, Yang-Hee
    • Journal of Intelligence and Information Systems
    • /
    • v.9 no.3
    • /
    • pp.99-115
    • /
    • 2003
  • In this paper, we present a knowledge-based object-oriented spatial database system called KOBOS. A knowledge-based approach is introduced to the object-oriented spatial database system for data modeling and approximate query answering. For handling the structure of spatial objects and the approximate spatial operators, we propose three levels of object-oriented data model: (1) a spatial shape model; (2) a spatial object model; (3) an internal description model. We use spatial type abstraction hierarchies(STAHs) to provide the range of the approximate spatial operators. We then propose SOQL, a spatial object-oriented query language. SOQL provides an integrated mechanism for the graphical display of spatial objects and the retrieval of spatial and aspatial objects. To support an efficient hybrid query evaluation, we use the top-down spatial query processing method.

  • PDF

Research on Factors Affecting South Korea's OFDI Based on a Spatial Measurement Model

  • Su, Shuai;Zhang, Fan
    • Journal of Korea Trade
    • /
    • v.26 no.1
    • /
    • pp.99-112
    • /
    • 2022
  • Purpose - This paper empirically investigates via a spatial lag model from the perspective of space economy to find the influencing factors of South Korea's OFDI along with 60 countries. Design/methodology - In the study of regional economic phenomena, we must first test the corresponding spatial correlation, and on this basis, complete the construction of the spatial model. For the target research object, after testing the spatial correlation, if there is spatial correlation, a spatial measurement model is needed. This paper uses the global Moran's I index for calculation. Based on the characteristics and research needs of the research object, this paper selects the spatial lag model to verify the existence of the spatial effect and factors affecting OFDI. Findings - Our results show that export scale, infrastructure, technology level, political stability, resource endowment, market size, distance and labor cost have a certain impact on Korea's OFDI, but at present the distance and market size factors are the most important influencing factors for South Korea's OFDI, The technical level and political stability have little effect on South Korea's OFDI, and are not main factors determining South Korea's OFDI. Originality/value - Through spatial measurement verification, it was found that the spatial effect has a significant impact on OFDI, along with more than 60 countries. On this basis, relevant suggestions are put forward, which have strong practical significance for South Korea's OFDI to achieve healthy and sustainable development.

Review of Spatial Linear Mixed Models for Non-Gaussian Outcomes (공간적 상관관계가 존재하는 이산형 자료를 위한 일반화된 공간선형 모형 개관)

  • Park, Jincheol
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.2
    • /
    • pp.353-360
    • /
    • 2015
  • Various statistical models have been proposed over the last decade for spatially correlated Gaussian outcomes. The spatial linear mixed model (SLMM), which incorporates a spatial effect as a random component to the linear model, is the one of the most widely used approaches in various application contexts. Employing link functions, SLMM can be naturally extended to spatial generalized linear mixed model for non-Gaussian outcomes (SGLMM). We review popular SGLMMs on non-Gaussian spatial outcomes and demonstrate their applications with available public data.

Role-Based Access Control in Object-Oriented GIS (객체지향 지리정보시스템에서의 역할 기반 접근 제어)

  • Kim, Mi-Yeon;Lee, Cheol-Min;Lee, Dong-Hoon;Moon, Chang-Joo
    • Journal of Information Technology Applications and Management
    • /
    • v.14 no.3
    • /
    • pp.49-77
    • /
    • 2007
  • Role-based access control (RBAC) models are recently receiving considerable attention as a generalized approach to access control. In line with the increase in applications that deal with spatial data. an advanced RBAC model whose entities and constraints depend on the characteristics of spatial data is required. Even if some approaches have been proposed for geographic information systems. most studies focus on the location of users instead of the characteristics of spatial data. In this paper. we extend the traditional RBAC model in order to deal with the characteristics of spatial data and propose new spatial constraints. We use the object-oriented modeling based on open GIS consortium geometric model to formalize spatial objects and spatial relations such as hierarchy relation and topology relation. As a result of the formalization for spatial relations. we present spatial constraints classified according to the characteristics of each relation. We demonstrate our extended-RBAC model called OOGIS-RBAC and spatial constraints through case studies. Finally. we compare our OOGIS-RBAC model and the DAC model in the management of access control to prove the efficiency of our model.

  • PDF

Spatial effect on the diffusion of discount stores (대형할인점 확산에 대한 공간적 영향)

  • Joo, Young-Jin;Kim, Mi-Ae
    • Journal of Distribution Research
    • /
    • v.15 no.4
    • /
    • pp.61-85
    • /
    • 2010
  • Introduction: Diffusion is process by which an innovation is communicated through certain channel overtime among the members of a social system(Rogers 1983). Bass(1969) suggested the Bass model describing diffusion process. The Bass model assumes potential adopters of innovation are influenced by mass-media and word-of-mouth from communication with previous adopters. Various expansions of the Bass model have been conducted. Some of them proposed a third factor affecting diffusion. Others proposed multinational diffusion model and it stressed interactive effect on diffusion among several countries. We add a spatial factor in the Bass model as a third communication factor. Because of situation where we can not control the interaction between markets, we need to consider that diffusion within certain market can be influenced by diffusion in contiguous market. The process that certain type of retail extends is a result that particular market can be described by the retail life cycle. Diffusion of retail has pattern following three phases of spatial diffusion: adoption of innovation happens in near the diffusion center first, spreads to the vicinity of the diffusing center and then adoption of innovation is completed in peripheral areas in saturation stage. So we expect spatial effect to be important to describe diffusion of domestic discount store. We define a spatial diffusion model using multinational diffusion model and apply it to the diffusion of discount store. Modeling: In this paper, we define a spatial diffusion model and apply it to the diffusion of discount store. To define a spatial diffusion model, we expand learning model(Kumar and Krishnan 2002) and separate diffusion process in diffusion center(market A) from diffusion process in the vicinity of the diffusing center(market B). The proposed spatial diffusion model is shown in equation (1a) and (1b). Equation (1a) is the diffusion process in diffusion center and equation (1b) is one in the vicinity of the diffusing center. $$\array{{S_{i,t}=(p_i+q_i{\frac{Y_{i,t-1}}{m_i}})(m_i-Y_{i,t-1})\;i{\in}\{1,{\cdots},I\}\;(1a)}\\{S_{j,t}=(p_j+q_j{\frac{Y_{j,t-1}}{m_i}}+{\sum\limits_{i=1}^I}{\gamma}_{ij}{\frac{Y_{i,t-1}}{m_i}})(m_j-Y_{j,t-1})\;i{\in}\{1,{\cdots},I\},\;j{\in}\{I+1,{\cdots},I+J\}\;(1b)}}$$ We rise two research questions. (1) The proposed spatial diffusion model is more effective than the Bass model to describe the diffusion of discount stores. (2) The more similar retail environment of diffusing center with that of the vicinity of the contiguous market is, the larger spatial effect of diffusing center on diffusion of the vicinity of the contiguous market is. To examine above two questions, we adopt the Bass model to estimate diffusion of discount store first. Next spatial diffusion model where spatial factor is added to the Bass model is used to estimate it. Finally by comparing Bass model with spatial diffusion model, we try to find out which model describes diffusion of discount store better. In addition, we investigate the relationship between similarity of retail environment(conceptual distance) and spatial factor impact with correlation analysis. Result and Implication: We suggest spatial diffusion model to describe diffusion of discount stores. To examine the proposed spatial diffusion model, 347 domestic discount stores are used and we divide nation into 5 districts, Seoul-Gyeongin(SG), Busan-Gyeongnam(BG), Daegu-Gyeongbuk(DG), Gwan- gju-Jeonla(GJ), Daejeon-Chungcheong(DC), and the result is shown

    . In a result of the Bass model(I), the estimates of innovation coefficient(p) and imitation coefficient(q) are 0.017 and 0.323 respectively. While the estimate of market potential is 384. A result of the Bass model(II) for each district shows the estimates of innovation coefficient(p) in SG is 0.019 and the lowest among 5 areas. This is because SG is the diffusion center. The estimates of imitation coefficient(q) in BG is 0.353 and the highest. The imitation coefficient in the vicinity of the diffusing center such as BG is higher than that in the diffusing center because much information flows through various paths more as diffusion is progressing. A result of the Bass model(II) shows the estimates of innovation coefficient(p) in SG is 0.019 and the lowest among 5 areas. This is because SG is the diffusion center. The estimates of imitation coefficient(q) in BG is 0.353 and the highest. The imitation coefficient in the vicinity of the diffusing center such as BG is higher than that in the diffusing center because much information flows through various paths more as diffusion is progressing. In a result of spatial diffusion model(IV), we can notice the changes between coefficients of the bass model and those of the spatial diffusion model. Except for GJ, the estimates of innovation and imitation coefficients in Model IV are lower than those in Model II. The changes of innovation and imitation coefficients are reflected to spatial coefficient(${\gamma}$). From spatial coefficient(${\gamma}$) we can infer that when the diffusion in the vicinity of the diffusing center occurs, the diffusion is influenced by one in the diffusing center. The difference between the Bass model(II) and the spatial diffusion model(IV) is statistically significant with the ${\chi}^2$-distributed likelihood ratio statistic is 16.598(p=0.0023). Which implies that the spatial diffusion model is more effective than the Bass model to describe diffusion of discount stores. So the research question (1) is supported. In addition, we found that there are statistically significant relationship between similarity of retail environment and spatial effect by using correlation analysis. So the research question (2) is also supported.

  • PDF
  • Comparative Analysis of 3D Spatial Data Models (3차원 공간정보 데이터 모델 비교 분석)

    • Park, Se-Ho;Lee, Ji-Yeong
      • Spatial Information Research
      • /
      • v.17 no.3
      • /
      • pp.277-285
      • /
      • 2009
    • Each system should have a suitable data model about their purpose for efficiently managing, analyzing, and manipulating data. And the usable range of application is determined by the data model, and suitable data models are being developed for each application. In GIS, diversity spatial data model is being developed too. The accuracy and update of the spatial data would be important for applying efficient application as well as the data modeling is important as constructing the spatial data structure. Therefore, the purposes of this research are to 1)compare domestic spatial data models with oversea spatial data models about their geometry model, topology model and visualizing method of 3D spatial data 2)to compare the features of the data model by analyzing each data structures. We 3)compare and analyze features of each spatial data models via the quantitative analysis of each spatial data models.

    • PDF

    (34141) Korea Institute of Science and Technology Information, 245, Daehak-ro, Yuseong-gu, Daejeon
    Copyright (C) KISTI. All Rights Reserved.