This paper presents the geophysical applications to the environmenml problem in an abandoned mine area. We would like to focus our attention on the mapping of the soil contamination and the detection of the buried mine tailings. For mapping the soil contamination. measurements of both in-situ magnetic susceptibility (k) and terrain conductivity were carried out. In-situ magnetic susceptibilities of the contaminated soil due to the acid mine drainage show higher values than those of the uncontaminated area. However. those data do not show the correlation with the degree of the soil contamination observed on the surface. The least-squares fitted formula obtained with the measured insitu magnetic susceptibilities is $k=4.8207{\times}W^{0.6332}$, where W is the $Fe^{+2}$ weight percentage. This weight gives most effect to magnetic susceptibility of the soil. Lateral variations of the soil contamination in the shallow subsurface can be detected by the electrical conductivity distributions from EM induction survey. TDIP (Time Domain Induced Polarization) and EM induction surveys were conducted to detect the buried mine tailings. From the results of TDIP, the spatial zone, which shows high chargeability-low resistivity, is interpreted as the buried mine tailings. Therefore, it is concluded that it is possible to discriminate the spatial zone from the uncontaminated ground.
유비쿼터스 시대를 향하여 나아가는 현대 사회에서 사람들을 위한 추천시스템은 필수 불가결한 요소 중의 하나이다. 추천 시스템 중에서 사용자의 성별, 나이, 직업 등의 인구 통계적 요소를 고려한 시스템이 주를 이루고 있지만 이러한 시스템에는 어느 정도의 한계가 있다. 추천에 있어서 사용자의 기분, 날씨, 온도 등 주변 환경의 상황이 반영되지 않고 있고 학습을 위한 데이터에 대한 신뢰도 또한 문제가 된다. 이러한 문제점을 해결하기 위해 본 논문에서는 상황정보(Context Information)와 공간 데이터 마이닝(Spatial Data Mining) 기법을 이용한 향상된 추천 시스템을 제안한다. 제안하는 시스템에서는 보다 정확한 추천을 위해 첫째, 날씨, 온도, 사용자의 기분 등의 상황정보를 고려하였다. 그리고 사용자의 유사도 측정을 통해 학습 데이터의 신뢰도를 향상시켰으며, 셋째, 의사결정 트리(Decision Tree) 기법을 이용하여 추천의 정확도를 높였다. 실험을 통하여 측정한 결과 제안하는 추천시스템이 기존의 인구 통계적 요소만을 고려한 시스템이나 의사결정 트리만을 이용한 시스템보다 향상된 성능을 보였다.
This study aims to introduce a model for enhancing community well-being through the utilization of public open data. To objectively assess abstract notions of residential satisfaction, text data from complaints is analyzed. By leveraging accessible public data, costs related to data collection are minimized. Initially, relevant text data containing civic complaints is collected and refined by removing extraneous information. This processed data is then combined with meaningful datasets and subjected to topic modeling, a text mining technique. The insights derived are visualized using Geographic Information System (GIS) and Application Programming Interface (API) data. The efficacy of this analytical model was demonstrated in the Godeok/Gangil area. The proposed methodology allows for comprehensive analysis across time, space, and categories. This flexible approach involves incorporating specific public open data as needed, all within the overarching framework.
의사결정 트리는 데이터 마이닝의 분류와 예측 작업에 주로 사용되는 기법 중의 하나이다. 실생활에서 공간의사결정을 위한 분류를 수행할 때에는 인접 데이터의 위치와 분산도를 고려하는 것이 매우 중요하다. 기존의 공간 의사결정 트리는 데이터의 공간적 특성을 표현하기 위해 각 객체간의 유클리디안 거리비율을 엔트로피로 반영하여 트리 구축 시 이용하였다. 그러나 이것은 공간 객체간의 거리 비율만을 설명할 뿐 공간 차원에서의 데이터 분산 정도와 각 분류된 클래스간의 연관관계 등은 파악할 수 없다는 한계점이 있었다 본 논문에서는 분산도와 차별도 기반의 공간 엔트로피를 이용하여 공간 데이터의 분포도를 반영하는 공간 의사결정 트리를 제안한다 분산도는 분류된 클래스 내의 공간 객체 분포도를 나타내고 차별도는 다른 클래스 내 공간 객체와의 분포도 및 관계성을 나타낸다. 이러한 분산도와 차별도의 비율을 엔트로피 계산 시 이용함으로써 비공간적 속성으로 분류된 각 클래스가 공간적으로는 얼마나 뚜렷하게 분류되는지 알 수 있게 한다. 제안 기법은 정확성과 계산 비용에 있어서 기존 기법보다 각각 약 18%, 11%의 성능 향상을 보였다.
Journal of information and communication convergence engineering
/
제13권2호
/
pp.105-112
/
2015
The estimation of missing sensor values is an important problem in sensor network applications, but the existing approaches have some limitations, such as the limitations of application scope and estimation accuracy. Therefore, in this paper, we propose a new estimation model based on a spatial-temporal correlation analysis (STCAM). STCAM can make full use of spatial and temporal correlations and can recognize whether the sensor parameters have a spatial correlation or a temporal correlation, and whether the missing sensor data are continuous. According to the recognition results, STCAM can choose one of the most suitable algorithms from among linear interpolation algorithm of temporal correlation analysis (TCA-LI), multiple regression algorithm of temporal correlation analysis (TCA-MR), spatial correlation analysis (SCA), spatial-temporal correlation analysis (STCA) to estimate the missing sensor data. STCAM was evaluated over Intel lab dataset and a traffic dataset, and the simulation experiment results show that STCAM has good estimation accuracy.
KSII Transactions on Internet and Information Systems (TIIS)
/
제9권1호
/
pp.169-189
/
2015
Detection of anomalous events from video streams is a challenging problem in many video surveillance applications. One such application that has received significant attention from the computer vision community is traffic video surveillance. In this paper, a Lossy Count based Sequential Temporal Pattern mining approach (LC-STP) is proposed for detecting spatio-temporal abnormal events (such as a traffic violation at junction) from sequences of video streams. The proposed approach relies mainly on spatial abstractions of each object, mining frequent temporal patterns in a sequence of video frames to form a regular temporal pattern. In order to detect each object in every frame, the input video is first pre-processed by applying Gaussian Mixture Models. After the detection of foreground objects, the tracking is carried out using block motion estimation by the three-step search method. The primitive events of the object are represented by assigning spatial and temporal symbols corresponding to their location and time information. These primitive events are analyzed to form a temporal pattern in a sequence of video frames, representing temporal relation between various object's primitive events. This is repeated for each window of sequences, and the support for temporal sequence is obtained based on LC-STP to discover regular patterns of normal events. Events deviating from these patterns are identified as anomalies. Unlike the traditional frequent item set mining methods, the proposed method generates maximal frequent patterns without candidate generation. Furthermore, experimental results show that the proposed method performs well and can detect video anomalies in real traffic video data.
본 논문에서는 공간 데이터 웨어하우스에서 시공간 분석지원을 위한 공간 데이터의 비중복 적재 기법을 제안한다. SDW는 이기종의 다양한 서비스를 지원하는 SDBMS로부터 공간 데이터를 추출한다. 제안 기법에서는 SOW에 소스로 참여하는 SDBMS에서 변경된 부분만을 추출하고, 이를 공간연산을 통해 중복된 데이터를 제거한 후 통합된 형태로 적재함으로써 빠른 공간 데이터 분석을 지원할 수 있으며, 저장 공간의 낭비를 줄일 수 있다. 이는 공간 마이닝등의 시간에 따른 분석 및 예측 분야에 효율적인 형태로 공간 데이터를 적재한다.
Background in a novel is most important elements with characters and events, and means time, place and situation that characters appeared. Among the background, spatial background can help conveys topic of a novel. So, it may be helpful for choosing a novel that readers want to read. In this paper, we are targeting Korean historical novels. In case of English text, It can be recognize spatial background easily because it use upper and lower case and words used with the spatial information such as Bank, University and City. But, in case Korean text, it is difficult to recognize that spatial background because there is few information about usage of letter. In the previous studies, they use machine learning or dictionaries and rules to recognize about spatial information in text such as news and text messages. In this paper, we build a nation dictionaries that refer to information such as 'Korean history' and 'Google maps.' We Also propose a method for recognizing spatial background based on patterns of postposition in Korean sentences comparing to previous works. We are grasp using of postposition with spatial background because Korean characteristics. And we propose a method based on result of morpheme analyze and frequency in a novel text for raising accuracy about recognizing spatial background. The recognized spatial background can help readers to grasp the atmosphere of a novel and to understand the events and atmosphere through recognition of the spatial background of the scene that characters appeared.
Based on the literature statistical method, the paper publication status of the isolated working face and the distribution of the rockburst coal mine were obtained. The numerical simulation method is used to study the stress distribution law of working face under different mining range. In addition, based on the similar material simulation test, the overlying strata failure modes and the deformation characteristics of coal pillars during the mining process of the isolated working face with thick-hard key strata are analyzed. The research shows that, under the influence of the key strata, the overlying strata formation above the isolated working face is a long arm T-type spatial structure. With the mining of the isolated working face, a series of damages occur in the coal pillars, causing the key strata to break and inducing the rockburst occurs. Combined with the mechanism of rockburst induced by the dynamic and static combined load, the source of dynamic and static load on the isolated working face is analyzed, and the rockburst monitoring methods and the prevention and control measures are proposed. Through the above research, the occurrence probability of rockburst can be effectively reduced, which is of great significance for the safe mining of deep coal mines.
컴퓨터 처리기술과 저장기술 그리고 인터넷 등의 영향으로 멀티미디어 데이터의 양은 급속하게 증가하지만 체계적으로 멀티미디어 데이터간의 연관규칙을 마이닝하는 연구는 초기 단계이다. 본 논문은 이미지 프로세싱 분야 및 내용기반 이미지 검색에 대한 기존 연구를 바탕으로 대형 영상 데이터 저장소에 저장된 이미지 데이터에서 재발생하는 항목간의 연관규칙을 찾으며 공간적 관계로 내용기반의 연관규칙을 마이닝하는 알고리즘을 제안한다. 제안된 연관규칙 탐색 알고리즘은 이미지의 색상, 질감, 모양 등 내용기반의 영상속성을 오브젝트 항목으로 하여 오브젝트가 이미지에서 재발생될 때를 이용, 이미지간의 연관규칙을 찾고 오브젝트들이 이미지에서 차지하고 있는 공간적 위치관계를 통해 드러나지 않는 이미지간의 연관규칙을 마이닝한다. 본 논문의 재발생 항목을 고려한 연관규칙 알고리즘은 Apriori 알고리즘보다 빈번한 항목 집합을 찾아내는데 더 높은 성능을 보인다는 것을 실험 을 통하여 제시한다. 제 안된 알고리즘은 동일한 정보원으로부터 받은 멀티미디어 데이터간의 연관성을 탐색하는데 특히 효과적이며 다양한 관련 응용분야에 적용할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.