• Title/Summary/Keyword: Spatial Metrics

Search Result 67, Processing Time 0.026 seconds

Target Market Determination for Information Distribution and Student Recruitment Using an Extended RFM Model with Spatial Analysis

  • ERNAWATI, ERNAWATI;BAHARIN, Safiza Suhana Kamal;KASMIN, Fauziah
    • Journal of Distribution Science
    • /
    • v.20 no.6
    • /
    • pp.1-10
    • /
    • 2022
  • Purpose: This research proposes a new modified Recency-Frequency-Monetary (RFM) model by extending the model with spatial analysis for supporting decision-makers in discovering the promotional target market. Research design, data and methodology: This quantitative research utilizes data-mining techniques and the RFM model to cluster a university's provider schools. The RFM model was modified by adapting its variables to the university's marketing context and adding a district's potential (D) variable based on heatmap analysis using Geographic Information System (GIS) and K-means clustering. The K-prototype algorithm and the Elbow method were applied to find provider school clusters using the proposed RFM-D model. After profiling the clusters, the target segment was assigned. The model was validated using empirical data from an Indonesian university, and its performance was compared to the Customer Lifetime Value (CLV)-based RFM utilizing accuracy, precision, recall, and F1-score metrics. Results: This research identified five clusters. The target segment was chosen from the highest-value and high-value clusters that comprised 17.80% of provider schools but can contribute 75.77% of students. Conclusions: The proposed model recommended more targeted schools in higher-potential districts and predicted the target segment with 0.99 accuracies, outperforming the CLV-based model. The empirical findings help university management determine the promotion location and allocate resources for promotional information distribution and student recruitment.

A Flow Analysis Framework for Traffic Video

  • Bai, Lu-Shuang;Xia, Ying;Lee, Sang-Chul
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.2
    • /
    • pp.45-53
    • /
    • 2009
  • The fast progress on multimedia data acquisition technologies has enabled collecting vast amount of videos in real time. Although the amount of information gathered from these videos could be high in terms of quantity and quality, the use of the collected data is very limited typically by human-centric monitoring systems. In this paper, we propose a framework for analyzing long traffic video using series of content-based analyses tools. Our framework suggests a method to integrate theses analyses tools to extract highly informative features specific to a traffic video analysis. Our analytical framework provides (1) re-sampling tools for efficient and precise analysis, (2) foreground extraction methods for unbiased traffic flow analysis, (3) frame property analyses tools using variety of frame characteristics including brightness, entropy, Harris corners, and variance of traffic flow, and (4) a visualization tool that summarizes the entire video sequence and automatically highlight a collection of frames based on some metrics defined by semi-automated or fully automated techniques. Based on the proposed framework, we developed an automated traffic flow analysis system, and in our experiments, we show results from two example traffic videos taken from different monitoring angles.

  • PDF

Accuracy Evaluation of Machine Learning Model for Concrete Aging Prediction due to Thermal Effect and Carbonation (콘크리트 탄산화 및 열효과에 의한 경년열화 예측을 위한 기계학습 모델의 정확성 검토)

  • Kim, Hyun-Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.4
    • /
    • pp.81-88
    • /
    • 2023
  • Numerous factors contribute to the deterioration of reinforced concrete structures. Elevated temperatures significantly alter the composition of the concrete ingredients, consequently diminishing the concrete's strength properties. With the escalation of global CO2 levels, the carbonation of concrete structures has emerged as a critical challenge, substantially affecting concrete durability research. Assessing and predicting concrete degradation due to thermal effects and carbonation are crucial yet intricate tasks. To address this, multiple prediction models for concrete carbonation and compressive strength under thermal impact have been developed. This study employs seven machine learning algorithms-specifically, multiple linear regression, decision trees, random forest, support vector machines, k-nearest neighbors, artificial neural networks, and extreme gradient boosting algorithms-to formulate predictive models for concrete carbonation and thermal impact. Two distinct datasets, derived from reported experimental studies, were utilized for training these predictive models. Performance evaluation relied on metrics like root mean square error, mean square error, mean absolute error, and coefficient of determination. The optimization of hyperparameters was achieved through k-fold cross-validation and grid search techniques. The analytical outcomes demonstrate that neural networks and extreme gradient boosting algorithms outshine the remaining five machine learning approaches, showcasing outstanding predictive performance for concrete carbonation and thermal effect modeling.

Development of Machine Learning Based Seismic Response Prediction Model for Shear Wall Structure considering Aging Deteriorations (경년열화를 고려한 전단벽 구조물의 기계학습 기반 지진응답 예측모델 개발)

  • Kim, Hyun-Su;Kim, Yukyung;Lee, So Yeon;Jang, Jun Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.24 no.2
    • /
    • pp.83-90
    • /
    • 2024
  • Machine learning is widely applied to various engineering fields. In structural engineering area, machine learning is generally used to predict structural responses of building structures. The aging deterioration of reinforced concrete structure affects its structural behavior. Therefore, the aging deterioration of R.C. structure should be consider to exactly predict seismic responses of the structure. In this study, the machine learning based seismic response prediction model was developed. To this end, four machine learning algorithms were employed and prediction performance of each algorithm was compared. A 3-story coupled shear wall structure was selected as an example structure for numerical simulation. Artificial ground motions were generated based on domestic site characteristics. Elastic modulus, damping ratio and density were changed to considering concrete degradation due to chloride penetration and carbonation, etc. Various intensity measures were used input parameters of the training database. Performance evaluation was performed using metrics like root mean square error, mean square error, mean absolute error, and coefficient of determination. The optimization of hyperparameters was achieved through k-fold cross-validation and grid search techniques. The analysis results show that neural networks and extreme gradient boosting algorithms present good prediction performance.

Estimation of Performativity According to the Variation of Photo Direction in Close-Range Digital Photogrammetry (촬영방향에 따른 근접수치사진측량의 수행성 평가)

  • Lee, Jong-Chool;Kim, Hee-Gyoo;Kang, Sang-Min;Nam, Shin
    • 한국지형공간정보학회:학술대회논문집
    • /
    • 2003.09a
    • /
    • pp.207-210
    • /
    • 2003
  • 본 연구에서는 측량용 디지털 카메라인 Rollei사에서 제조한 d7 metric과 d7 $metrics^5$를 이용하여 촬영거리와 수렴각을 4m와 $30^{\circ}$로 일정하게 유지하고, 촬영방향을 다르게 하여 촬영하였으며, 또한 표정장업 시 일어나는 오차를 최소화 하기 위해 프로그램상에서 자동적으로 상호표정이 되는 원형타켓을 사용하였으며, 광속조정법을 실시하여 RMSE를 산출하였다. 이러한 연구는 근접사진측량으로 대상물을 측정할 시 촬영여건이 불가피하게 대상물의 중심방향에서 촬영이 어려울 경우 정확도를 평가하는데 이용될 것이라 사료된다.

  • PDF

Multi-focus Image Fusion using Fully Convolutional Two-stream Network for Visual Sensors

  • Xu, Kaiping;Qin, Zheng;Wang, Guolong;Zhang, Huidi;Huang, Kai;Ye, Shuxiong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.5
    • /
    • pp.2253-2272
    • /
    • 2018
  • We propose a deep learning method for multi-focus image fusion. Unlike most existing pixel-level fusion methods, either in spatial domain or in transform domain, our method directly learns an end-to-end fully convolutional two-stream network. The framework maps a pair of different focus images to a clean version, with a chain of convolutional layers, fusion layer and deconvolutional layers. Our deep fusion model has advantages of efficiency and robustness, yet demonstrates state-of-art fusion quality. We explore different parameter settings to achieve trade-offs between performance and speed. Moreover, the experiment results on our training dataset show that our network can achieve good performance with subjective visual perception and objective assessment metrics.

Survey of Temporal Information Extraction

  • Lim, Chae-Gyun;Jeong, Young-Seob;Choi, Ho-Jin
    • Journal of Information Processing Systems
    • /
    • v.15 no.4
    • /
    • pp.931-956
    • /
    • 2019
  • Documents contain information that can be used for various applications, such as question answering (QA) system, information retrieval (IR) system, and recommendation system. To use the information, it is necessary to develop a method of extracting such information from the documents written in a form of natural language. There are several kinds of the information (e.g., temporal information, spatial information, semantic role information), where different kinds of information will be extracted with different methods. In this paper, the existing studies about the methods of extracting the temporal information are reported and several related issues are discussed. The issues are about the task boundary of the temporal information extraction, the history of the annotation languages and shared tasks, the research issues, the applications using the temporal information, and evaluation metrics. Although the history of the tasks of temporal information extraction is not long, there have been many studies that tried various methods. This paper gives which approach is known to be the better way of extracting a particular part of the temporal information, and also provides a future research direction.

A Study on the Optimization Conditions for the Mounted Cameras on the Unmanned Aerial Vehicles(UAV) for Photogrammetry and Observations (무인비행장치용 측량 및 관측용 탑재 카메라의 최적화 조건 연구)

  • Hee-Woo Lee;Ho-Woong Shon;Tae-Hoon Kim
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_2
    • /
    • pp.1063-1071
    • /
    • 2023
  • Unmanned aerial vehicles (UAVs, drones) are becoming increasingly useful in a variety of fields. Advances in UAV and camera technology have made it possible to equip them with ultra-high resolution sensors and capture images at low altitudes, which has improved the reliability and classification accuracy of object identification on the ground. The distinctive contribution of this study is the derivation of sensor-specific performance metrics (GRD/GSD), which shows that as the GSD increases with altitude, the GRD value also increases. In this study, we identified the characteristics of various onboard sensors and analysed the image quality (discrimination resolution) of aerial photography results using UAVs, and calculated the shooting conditions to obtain the discrimination resolution required for reading ground objects.

Performance Improvement for Device-to-Device (D2D) Users in Underlay Cellular Communication Networks

  • Bin Zhong ;Hehong Lin;Liang Chen ;Zhongshan Zhang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.9
    • /
    • pp.2805-2817
    • /
    • 2024
  • This study focuses on the performance of device-to-device (D2D) communications in underlay cellular networks by analyzing key metrics such as successful transmission probability, coverage probability, and throughput. Under the homogeneous Poisson point process (PPP) spatial distribution of full-duplex (FD)-D2D users in cellular networks, stochastic geometry tools are used to derive approximate expressions for D2D users' coverage probability and throughput. In comparison to the conventional half-duplex (HD) communication mode, when the self-interference cancellation factor β reaches -95 dB, there is a substantial improvement in the throughput of FD-D2D users, nearly doubling their gain. Additionally, experimental results demonstrate that the Newton iterative algorithm can be used to optimize the targeted signal-to-interference-plus-noise-ratio (SINR) threshold of users within the range of (10, 20) dB.

Deep Reinforcement Learning based Tourism Experience Path Finding

  • Kyung-Hee Park;Juntae Kim
    • Journal of Platform Technology
    • /
    • v.11 no.6
    • /
    • pp.21-27
    • /
    • 2023
  • In this paper, we introduce a reinforcement learning-based algorithm for personalized tourist path recommendations. The algorithm employs a reinforcement learning agent to explore tourist regions and identify optimal paths that are expected to enhance tourism experiences. The concept of tourism experience is defined through points of interest (POI) located along tourist paths within the tourist area. These metrics are quantified through aggregated evaluation scores derived from reviews submitted by past visitors. In the experimental setup, the foundational learning model used to find tour paths is the Deep Q-Network (DQN). Despite the limited availability of historical tourist behavior data, the agent adeptly learns travel paths by incorporating preference scores of tourist POIs and spatial information of the travel area.

  • PDF