• Title/Summary/Keyword: Spatial Boundary

Search Result 849, Processing Time 0.028 seconds

Depth Image Upsampling Algorithm Using Selective Weight (선택적 가중치를 이용한 깊이 영상 업샘플링 알고리즘)

  • Shin, Soo-Yeon;Kim, Dong-Myung;Suh, Jae-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.7
    • /
    • pp.1371-1378
    • /
    • 2017
  • In this paper, we present an upsampling technique for depth map image using selective bilateral weights and a color weight using laplacian function. These techniques prevent color texture copy problem, which problem appears in existing upsamplers uses bilateral weight. First, we construct a high-resolution image using the bicubic interpolation technique. Next, we detect a color texture region using pixel value differences of depth and color image. If an interpolated pixel belongs to the color texture edge region, we calculate weighting values of spatial and depth in $3{\times}3$ neighboring pixels and compute the cost value to determine the boundary pixel value. Otherwise we use color weight instead of depth weight. Finally, the pixel value having minimum cost is determined as the pixel value of the high-resolution depth image. Simulation results show that the proposed algorithm achieves good performance in terns of PSNR comparison and subjective visual quality.

Effect of Artificial Changes in Geographical Features on Local Wind (인공적 지형변화가 국지풍에 미치는 영향)

  • Kim, Do-Yong;Kim, Jae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.2
    • /
    • pp.185-194
    • /
    • 2016
  • The effect of artificial changes in geographical features on local wind was analyzed at the construction site of bridge and fill-up bank in the southern part of Haui-do. Geographic Information System (GIS) data and Computational Fluid Dynamics (CFD) model were used in this study. Three-dimensional numerical topography based on the GIS data for the target area was constructed for the surface boundary input data of the CFD model. The wind observations at an Automatic Weather Station (AWS) located in Haui-do were used to set-up the model inflows. The seasonal simulations were conducted. The differences in surface wind speed between after and before artificial changes in geographical features were analyzed. The surface wind speed decreases 5 to 20% at the south-western part and below 2% of the spatial average for salt field. There was also marked the effect of artificial changes in geographical features on local wind in the westerly wind case for the target area.

Numerical Experiments of Shallow Water Eqs. by FEM (유한요소법을 이용한 천수방정식의 수치실험)

  • Choi, Sung Uk;Lee, Kil Seong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.4
    • /
    • pp.141-150
    • /
    • 1990
  • Numerical experiments of sballow water equations are performed under various boundary conditions by finite element method to simulate the circulation in estuaries and coastal areas. Galerkin method is employed to discretize spatial domain, and for time integration, finite difference method (Crank-Nicolson scheme) is used. This method is tested in five problems, in which first four cases have analytic solutions. The computed values are well in agreement with the analytic solutions in four experiments and the result of the last 2-dimensional ease is resonable. Implicit and two step Lax-Wendroff schemes in time domain are compared, and the results when using four node bilinear and triangular elements are presented. Consequently it takes very long time for complex problems requiring many elements to integrate all the time steps using the implicit schemes. And the explicit scheme requires careful consideration in selecting the time step and the grid size to obtain the desired accuracy.

  • PDF

Using Bayesian Approaches to Reduce Truncation Artifact in Magnetic Resonance Imaging

  • Lee, Su-Jin
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.6
    • /
    • pp.585-593
    • /
    • 1998
  • In Fourier magnetic resonance imaging (MRI), the number of phase encoded signals is often reduced to minimize the duration of the studies and maintain adequate signal-to-noise ratio. However, this results in the well-known truncation artifact, whose effect manifests itself as blurring and ringing in the image domain. In this paper, we propose a new regularization method in the context of a Bayesian framework to reduce truncation artifact. Since the truncation artifact appears in t도 phase direction only, the use of conventional piecewise-smoothness constraints with symmetric neighbors may result in the loss of small details and soft edge structures in the read direction. Here, we propose more elaborate forms of constraints than the conventional piecewise-smoothness constraints, which can capture actual spatial information about the MR images. Our experimental results indicate that the proposed method not only reduces the truncation artifact, but also improves tissue regularity and boundary definition without oversmoothing soft edge regions.

  • PDF

A Study on the Digital Architectural Space's Characteristic of Expression Based on the Traditional Architecture Properties - Focused on the Immateriality Characteristics - (전통 건축 공간 특성으로 본 디지털 건축 공간의 표현특성에 관한 연구 - 비물질적 특성을 중심으로 -)

  • Lee, Joon-Ho
    • Korean Institute of Interior Design Journal
    • /
    • v.23 no.5
    • /
    • pp.51-57
    • /
    • 2014
  • In the early 20st century, created distrust on the mechanistic and dualistic view based on the world of Descartes and Newton. As the features of this new science cannot be explained by the existing Western philosophy but can be explained by the thinking system immanent in the Oriental traditional thought, many scientists and philosophers are concentrating their interests on the Oriental philosophy. In addition, some have been making efforts to find solutions needed for a new paradigm from the thinking system of the Orient. A variety of discussions have also been raised in connection with architecture due to this philosophical change. It has now become possible to conduct free creative acts, staying away from physical limitations, including gravity by diversified simulations through a computer. This physical liberation in turn has caused new changes to the spatial concept of architecture, thereby granting the freedom of the expression that could not be even imagined before and opening a possibility of new architecture and space. At the same time, the digital space architecture actively accommodating this technology is generating a phenomenon that the existing physical and realistic things are rapidly being changed gradually to immaterial and unrealistic ones. This study has analyzed the properties of digital architectural space as the immateriality of our traditional architectural space. The results are as follows: It can be seen that the immaterial features exhibited in the digital architectural space and the traditional architectural one are not just interconnected with specific features, but they are correlated to all immaterial features. Thus, immateriality that are common in the traditional and digital architectural spaces is complementary organic, which is contained in the ambiguity of boundary between other spaces. It is regarded to the architecture as a living things in space diversity based on ideological similarities.

Relationship between Pollen Concentration and Meteorological Condition in an Urban Area (도시지역 공중화분 농도와 기상조건과의 관계)

  • Oh, In-Bo;Kim, Yangho;Choi, Kee-Ryong;Lee, Ji Ho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.6
    • /
    • pp.780-788
    • /
    • 2013
  • This study attempted to determine important meteorological parameters related to airborne pollen concentrations in urban areas. Hourly pollen measurement data were prepared from a regular sampling with a volumetric Burkard spore trap at a site in the Ulsan city, during the spring season (March~May) of 2011. Results showed that the daily mean and maximum concentrations for total pollen counts during the spring season were statistically significantly correlated with both air temperature and wind speed; daily mean pollen concentration was the most highly related to daily maximum temperature (r=0.567, p<0.001). It was also identified that pollen concentration has a stronger relationship with wind speed at the rural site than at the urban one, which confirms that strong wind conditions over the pollen sources area can be favorable for pollen dispersal, resulting in increases in airborne pollen concentrations downwind. From the results of an oak-pollen episode analysis, it was found that there was a significant relationship between hourly variation of oak pollen concentrations and dynamic meteorological factors, such as wind and mixing height (representing the boundary layer depth); especially, a strong southwestern wind and elevated mixing height was associated with high nocturnal concentrations of oak pollen. This study suggests that temperature, wind, and mixing height can be important considerations in explaining the pollen concentration variations. Additional examination of complex interactions of multiple meteorological parameters affecting pollen behavior should be carried out in order to better understand and predict the temporal and spatial pollen distribution in urban areas.

Analytical Study on the Slewing Dynamics of Hybrid Coordinate Systems (복합좌표계 시스템의 선회동역학에 관한 해석적 연구)

  • Suk, Jin-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.6
    • /
    • pp.36-44
    • /
    • 2003
  • In this paper, an analytic solution method is proposed to overcome the numerical problems when the slewing dynamics of hybrid coordinate systems is investigated via time finite element analysis. It is shown that the dynamics of the hybrid coordinate systems is governed by the coupled dual differential equations for both slewing and structural modes. Structural modes are transformed into the time-based modal coordinates and analytic spatial propagation equations are derived for each space-dependent time mode. Slew angle history is obtained analytically by appropriate applications of the boundary conditions and structural propagation is re-calculated using the slew angle. Numerical examples are demonstrated to validate the proposed analytic method in comparison to the existing state transition matrix method.

Uncertainty for Privacy and 2-Dimensional Range Query Distortion

  • Sioutas, Spyros;Magkos, Emmanouil;Karydis, Ioannis;Verykios, Vassilios S.
    • Journal of Computing Science and Engineering
    • /
    • v.5 no.3
    • /
    • pp.210-222
    • /
    • 2011
  • In this work, we study the problem of privacy-preservation data publishing in moving objects databases. In particular, the trajectory of a mobile user in a plane is no longer a polyline in a two-dimensional space, instead it is a two-dimensional surface of fixed width $2A_{min}$, where $A_{min}$ defines the semi-diameter of the minimum spatial circular extent that must replace the real location of the mobile user on the XY-plane, in the anonymized (kNN) request. The desired anonymity is not achieved and the entire system becomes vulnerable to attackers, since a malicious attacker can observe that during the time, many of the neighbors' ids change, except for a small number of users. Thus, we reinforce the privacy model by clustering the mobile users according to their motion patterns in (u, ${\theta}$) plane, where u and ${\theta}$ define the velocity measure and the motion direction (angle) respectively. In this case, the anonymized (kNN) request looks up neighbors, who belong to the same cluster with the mobile requester in (u, ${\theta}$) space: Thus, we know that the trajectory of the k-anonymous mobile user is within this surface, but we do not know exactly where. We transform the surface's boundary poly-lines to dual points and we focus on the information distortion introduced by this space translation. We develop a set of efficient spatiotemporal access methods and we experimentally measure the impact of information distortion by comparing the performance results of the same spatiotemporal range queries executed on the original database and on the anonymized one.

REMOTE SENSING OF THE CHINA SEAS AT ORSI/OUC

  • HE, Ming-Xia;Zeng, Kan;Chen, Haihua;Zhang, Tinglu;Hu, Lianbo;Liu, Zhishen;Wu, Songhua;Zhao, Chaofang;Guan, Lei;Hu, Chuanmin
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.11-14
    • /
    • 2006
  • We present an overview on the observation and research for the China seas using both field experiments and multi-sensor satellite data at ORSI/OUC, covering two topics: (1) Spatial and temporal distribution of internal waves in the China Seas and retrieval of internal wave parameters; (2) Retrieval, validation, and cross-comparison of multi-sensor ocean color data as well as ocean optics in situ experiments in the East China Sea. We also present an incoherent Doppler wind lidar, developed by ORSI, and its observation for marine-atmospheric boundary layer.

  • PDF

Principles of Eco-Village Planning Applying Landscape Ecological Indices (경관생태지표를 활용한 생태마을계획 원리)

  • Whang Bo-Chul;Lee Myung-Woo
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.33 no.4 s.111
    • /
    • pp.71-78
    • /
    • 2005
  • The purpose of this study is the practical application of landscape ecological indices to establishment of eco-village planning methodology. Planning an eco-village has to be carried out in the boundary of a small watershed that is defined by homogeneous ecological character. Because the small watershed is a landscape unit it can have unique ecological character. On this viewpoint, the spatial structure is analyzed by the ecological attributes of form, distribution arrangement and composition of the sub-landscape units. Among all of the sub-landscape units, a green tract of land is the main subject of the analyzing entity. Woodland or forest as a green tract of land is a source of biological species and materials. Therefore the ecological attributes of green patches are especially analyzed by landscape ecological indices. The selected landscape ecological indices are elongation, lobes, interior area ratio, convolution of perimeter and proximity of the green patches. These indices represent the state of ecological conditions and they will be the evaluation factors of the landscape ecological planning. These frameworks for landscape ecological planning apply to Obok and Ganggeum villages in Wanju-gun, Korea. A proposed planning was evaluated by the selected landscape ecological indices. Among the selected landscape ecological indices of green patches, perimeter convolution and proximity were increased. It means that the ecological condition of peen paches will be mon sound and green areas of the village will be expanded naturally. In addition to this connectivities among green patches will also be improved.