• Title/Summary/Keyword: Spatial Attention Areas

Search Result 71, Processing Time 0.021 seconds

Analysis on the Effects of Land Cover Types and Topographic Features on Heat Wave Days (토지피복유형과 지형특성이 폭염일수에 미치는 영향 분석)

  • PARK, Kyung-Hun;SONG, Bong-Geun;PARK, Jae-Eun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.4
    • /
    • pp.76-91
    • /
    • 2016
  • The purpose of this study is to analyze the effects of spatial characteristics, such as land cover and topography, on heat wave days from the city of Milyang, which has recently drawn attention for its heat wave problems. The number of heat wave days was calculated utilizing RCP-based South Korea climate data from 2000 to 2010. Land cover types were reclassified into urban area, agricultural area, forest area, water, and grassland using 2000, 2005, and 2010 land cover data constructed by the Ministry of Environment. Topographical features were analyzed by topographic position index (TPI) using a digital elevation model (DEM) with 30 m spatial resolution. The results show that the number of heat wave days was 31.4 days in 2000, which was the highest, followed by 26.9 days in 2008, 24.2 days in 2001, and 24.0 days in 2010. The heat wave distribution was relatively higher in agricultural areas, valleys, and rural areas. The topography of Milyang contains more mountainous slope (51.6%) than flat (19.7%), while large-scale valleys (12.2%) are distributed across some of the western region. Correlation analysis between heat wave and spatial characteristics showed that the correlation between forest area land cover and number of heat wave days was negative (-0.109), indicating that heat wave can be mitigated. Topographically, flat areas and heat wave showed a positive correlation (0.305). These results provide important insights for urban planning and environmental management for understanding the impact of land development and topographic change on heat wave.

Analysis of Trends in Dose through Evaluation of Spatial Dose Rate and Surface Contamination in Radiation-Controlled Area and Personal Exposed Dose of Radiation Worker at the Korea Institute of Radiological and Medical Sciences (KIRAMS)

  • Lee, Bu Hyung;Kim, Sung Ho;Kwon, Soo Il;Kim, Jae Seok;Kim, Gi-sub;Park, Min Seok;Park, Seungwoo;Jung, Haijo
    • Progress in Medical Physics
    • /
    • v.27 no.3
    • /
    • pp.146-155
    • /
    • 2016
  • As the probability of exposure to radiation increases due to an increase in the use of radioisotopes and radiation generators, the importance of a radiation safety management field is being highlighted. We intend to help radiation workers with exposure management by identifying the degree of radiation exposure and contamination to determine an efficient method of radiation safety management. The personal exposure doses of the radiation workers at the Korea Institute of Radiological & Medical Sciences measured every quarter during a five-year period from Jan. 1, 2011 till Dec. 31, 2015 were analyzed using a TLD (thermoluminescence dosimeter). The spatial dose rates of radiation-controlled areas were measured using a portable radioscope, and the level of surface contamination was measured at weekly intervals using a piece of smear paper and a low background alpha/beta counter. Though the averages of the depth doses and the surface doses in 2012 increased from those in 2011 by about 14%, the averages were shown to have decreased every year after that. The exposure dose of 27 mSv in 2012 increased from that in 2011 in radiopharmaceutical laboratories and, in the case of the spatial dose rate, the rate of decrease in 2012 was shown to be similar to the annual trend of the whole institute. In the case of the surface contamination level, as the remaining radiation-controlled area with the exception of the I-131 treatment ward showed a low value less than $1.0kBq/m^2$, the annual trend of the I-131 treatment ward was shown to be similar to that of the entire institute. In conclusion, continuous attention should be paid to dose monitoring of the radiation-controlled areas where unsealed sources are handled and the workers therein.

Spatial Similarity between the Changjiang Diluted Water and Marine Heatwaves in the East China Sea during Summer (여름철 양자강 희석수 공간 분포와 동중국해 해양열파의 공간적 유사성에 관한 연구)

  • YONG-JIN TAK;YANG-KI CHO;HAJOON SONG;SEUNG-HWA CHAE;YONG-YUB KIM
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.28 no.4
    • /
    • pp.121-132
    • /
    • 2023
  • Marine heatwaves (MHWs), referring to anomalously high sea surface temperatures, have drawn significant attention from marine scientists due to their broad impacts on the surface marine ecosystem, fisheries, weather patterns, and various human activities. In this study, we examined the impact of the distribution of Changjiang diluted water (CDW), a significant factor causing oceanic property changes in the East China Sea (ECS) during the summer, on MHWs. The surface salinity distribution in the ECS indicates that from June to August, the eastern extension of the CDW influences areas as far as Jeju Island and the Korea Strait. In September, however, the CDW tends to reside in the Changjiang estuary. Through the Empirical Orthogonal Function analysis of the cumulative intensity of MHWs during the summer, we extracted the loading vector of the first mode and its principal component time series to conduct a correlation analysis with the distribution of the CDW. The results revealed a strong negative spatial correlation between areas of the CDW and regions with high cumulative intensity of MHWs, indicating that the reinforcement of stratification due to low-salinity water can increase the intensity and duration of MHWs. This study suggests that the CDW may still influence the spatial distribution of MHWs in the region, highlighting the importance of oceanic environmental factors in the occurrence of MHWs in the waters surrounding the Korean Peninsula.

A Study on the Evaluation of 'Small Library' Design Applying Natural Environmental Characteristics - Focused on the Case Study - (자연환경 특성을 적용한 '작은도서관' 디자인 평가에 관한 연구 - 사례조사를 중심으로 -)

  • Hong, Min-Hee;Shim, Eun-ju
    • The Journal of Sustainable Design and Educational Environment Research
    • /
    • v.19 no.1
    • /
    • pp.3-12
    • /
    • 2020
  • Many libraries have recently become enlarged and industrialized. Spaces dedicated to natural environments and climates in libraries have been isolated, and spaces that take natural environments into consideration have only recently started to receive attention. People all around the world enjoy reading books in nature. Reading is interpreted as the same context as the desire to go somewhere higher. Contemporary people have discovered ways to enjoy reading books along with nature by establishing bookshelves in mountains, forests, or green fields. These people have created libraries that place nature as the protagonist. In spatial terms, natural environments mainly encompass scientific and systemic concepts and embrace a sentimental approach to the natural environments of local areas not previously considered. The purpose of this research study is to present the direction for spatial planning that harmonizes nature with space, and to propose the spatial planning of a "small library" by applying natural environmental characteristics.

Spatial Inequalities in the Incidence of Colorectal Cancer and Associated Factors in the Neighborhoods of Tehran, Iran: Bayesian Spatial Models

  • Mansori, Kamyar;Solaymani-Dodaran, Masoud;Mosavi-Jarrahi, Alireza;Motlagh, Ali Ganbary;Salehi, Masoud;Delavari, Alireza;Asadi-Lari, Mohsen
    • Journal of Preventive Medicine and Public Health
    • /
    • v.51 no.1
    • /
    • pp.33-40
    • /
    • 2018
  • Objectives: The aim of this study was to determine the factors associated with the spatial distribution of the incidence of colorectal cancer (CRC) in the neighborhoods of Tehran, Iran using Bayesian spatial models. Methods: This ecological study was implemented in Tehran on the neighborhood level. Socioeconomic variables, risk factors, and health costs were extracted from the Equity Assessment Study conducted in Tehran. The data on CRC incidence were extracted from the Iranian population-based cancer registry. The $Besag-York-Molli{\acute{e}}$ (BYM) model was used to identify factors associated with the spatial distribution of CRC incidence. The software programs OpenBUGS version 3.2.3, ArcGIS 10.3, and GeoDa were used for the analysis. Results: The Moran index was statistically significant for all the variables studied (p<0.05). The BYM model showed that having a women head of household (median standardized incidence ratio [SIR], 1.63; 95% confidence interval [CI], 1.06 to 2.53), living in a rental house (median SIR, 0.82; 95% CI, 0.71 to 0.96), not consuming milk daily (median SIR, 0.71; 95% CI, 0.55 to 0.94) and having greater household health expenditures (median SIR, 1.34; 95% CI, 1.06 to 1.68) were associated with a statistically significant elevation in the SIR of CRC. The median (interquartile range) and mean (standard deviation) values of the SIR of CRC, with the inclusion of all the variables studied in the model, were 0.57 (1.01) and 1.05 (1.31), respectively. Conclusions: Inequality was found in the spatial distribution of CRC incidence in Tehran on the neighborhood level. Paying attention to this inequality and the factors associated with it may be useful for resource allocation and developing preventive strategies in at-risk areas.

Spatial Analysis of Carbon Storage in Satellite Radar Imagery Utilizing Sentinel-1: A Case Study of the Ungok Wetlands (위성 레이더 영상 중 Sentinel-1을 활용한 탄소 흡수원 공간분석 - 운곡습지를 대상으로 -)

  • Ha-Eun Yu;Young-Il Cho;Shin-Woo Lee;Moung-Jin Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_3
    • /
    • pp.1731-1745
    • /
    • 2023
  • Within the framework of the post-2020 climate regime, the Paris Agreement's emphasis on Nationally Determined Contributions and Biennial Transparency Reporting is paramount in addressing its long-term temperature goal. A salient issue is the treatment of wetland ecosystems within the context of Land Use, Land-Use Change, and Forestry, as defined by the Intergovernmental Panel on Climate Change. In the 2019 National Inventory Report, wetlands were recategorized as emission sources due to their designation as inundated areas. This study employs C-band radar imagery to discriminate between inundated and non-inundated regions of wetlands, enabling the quantification of their spatial dynamics. The research capitalizes on 24-period Sentinel-1 satellite data to cover both the inundation and desiccation phases while centering its attention on Ungok Wetland, a Ramsar-designated inland wetland conservation area in Korea. The inundated area is quantitatively assessed through the integration of multi-temporal Sentinel-1 Single-Look Complex (SLC) data, aerial orthophotography, and inland wetland spatial information. Furthermore, the study scrutinizes fluctuations in the maximum and minimum inundated areas, with substantial changes corroborated via drone aerial reconnaissance. The outcomes of this investigation hold the potential to make substantive contributions to the refinement of national greenhouse gas absorption and emission factors, thereby informing the development of comprehensive greenhouse gas inventories. These efforts align directly with the overarching objectives of the Paris Agreement.

Portable Low-Cost MRI System Based on Permanent Magnets/Magnet Arrays

  • Huang, Shaoying;Ren, Zhi Hua;Obruchkov, Sergei;Gong, JIa;Dykstra, Robin;Yu, Wenwei
    • Investigative Magnetic Resonance Imaging
    • /
    • v.23 no.3
    • /
    • pp.179-201
    • /
    • 2019
  • Portable low-cost magnetic resonance imaging (MRI) systems have the potential to enable "point-of-care" and timely MRI diagnosis, and to make this imaging modality available to routine scans and to people in underdeveloped countries and areas. With simplicity, no maintenance, no power consumption, and low cost, permanent magnets/magnet arrays/magnet assemblies are attractive to be used as a source of static magnetic field to realize the portability and to lower the cost for an MRI scanner. However, when taking the canonical Fourier imaging approach and using linear gradient fields, homogeneous fields are required in a scanner, resulting in the facts that either a bulky magnet/magnet array is needed, or the imaging volume is too small to image an organ if the magnet/magnet array is scaled down to a portable size. Recently, with the progress on image reconstruction based on non-linear gradient field, static field patterns without spatial linearity can be used as spatial encoding magnetic fields (SEMs) to encode MRI signals for imaging. As a result, the requirements for the homogeneity of the static field can be relaxed, which allows permanent magnets/magnet arrays with reduced sizes, reduced weight to image a bigger volume covering organs such as a head. It offers opportunities of constructing a truly portable low-cost MRI scanner. For this exciting potential application, permanent magnets/magnet arrays have attracted increased attention recently. A magnet/magnet array is strongly associated with the imaging volume of an MRI scanner, image reconstruction methods, and RF excitation and RF coils, etc. through field patterns and field homogeneity. This paper offers a review of permanent magnets and magnet arrays of different kinds, especially those that can be used for spatial encoding towards the development of a portable and low-cost MRI system. It is aimed to familiarize the readers with relevant knowledge, literature, and the latest updates of the development on permanent magnets and magnet arrays for MRI. Perspectives on and challenges of using a permanent magnet/magnet array to supply a patterned static magnetic field, which does not have spatial linearity nor high field homogeneity, for image reconstruction in a portable setup are discussed.

Mapping Vegetation Volume in Urban Environments by Fusing LiDAR and Multispectral Data

  • Jung, Jinha;Pijanowski, Bryan
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.6
    • /
    • pp.661-670
    • /
    • 2012
  • Urban forests provide great ecosystem services to population in metropolitan areas even though they occupy little green space in a huge gray landscape. Unfortunately, urbanization inherently results in threatening the green infrastructure, and the recent urbanization trends drew great attention of scientists and policy makers on how to preserve or restore green infrastructure in metropolitan area. For this reason, mapping the spatial distribution of the green infrastructure is important in urban environments since the resulting map helps us identify hot green spots and set up long term plan on how to preserve or restore green infrastructure in urban environments. As a preliminary step for mapping green infrastructure utilizing multi-source remote sensing data in urban environments, the objective of this study is to map vegetation volume by fusing LiDAR and multispectral data in urban environments. Multispectral imageries are used to identify the two dimensional distribution of green infrastructure, while LiDAR data are utilized to characterize the vertical structure of the identified green structure. Vegetation volume was calculated over the metropolitan Chicago city area, and the vegetation volume was summarized over 16 NLCD classes. The experimental results indicated that vegetation volume varies greatly even in the same land cover class, and traditional land cover map based above ground biomass estimation approach may introduce bias in the estimation results.

Applying the Space Syntax Technique to the Network of Public Transportation (Space Syntax 기법의 대중교통망 적용 방안에 관한 연구)

  • Jun, Chul-Min
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.12 no.2 s.29
    • /
    • pp.73-77
    • /
    • 2004
  • Due to the traffic congestion of the city and public transportation-oriented policies in large cities, public transportation is receiving attention and being used increasingly. However, relatively less research on the design and distribution of public transportation network and limitations in quantitative approaches have made implementation and operation practically difficult. Over- or under-supply of transportation routes caused unbalanced connectivity among areas and, thus, differences in time, expenses and metal burden of users traveling the same distances. On the other hand, the Space Syntax theory, originally designed to calculate the connectivity of urban or architectural spaces, helps generate quantitative connectivity of whole space simply based on the spacial structure. This study modified the original Space Syntax algorithm to fit the public transportation problem and showed how it is applied to a transportation network by creating an artificial GIS network.

  • PDF

On Indexing Method for Current Positions of Moving Objects (이동 객체의 현재 위치 색인 기법)

  • Park, Hyun-Kyoo;Kang, Sung-Tak;Kim, Myoung-Ho;Min, Kyoung-Wook
    • Journal of Korea Spatial Information System Society
    • /
    • v.5 no.1 s.9
    • /
    • pp.65-74
    • /
    • 2003
  • Location-based service is an important spatiotemporal database application area that provides the location-aware information of wireless terminals via positioning devices such as GPS. With the rapid advances of wireless communication systems, the requirement of mobile application areas including traffic, mobile commerce and supply chaining management became the center of attention for various research issues in spatiotemporal databases. In this paper we present the A-Quadtree, an efficient indexing method for answering location-based queries where the movement vector information (e.g., speed and velocity) is not presented. We implement the A-Quadtree with an index structure for object identifiers as a.Net component to apply the component to multiplatforms. We present our approach and describe the performance evaluation through various experiments. In our experiments, we compare the performance with previous approaches and show the enhanced efficiency of our method.

  • PDF