• Title/Summary/Keyword: Sparse signal processing

Search Result 33, Processing Time 0.025 seconds

Off-grid direction-of-arrival estimation for wideband noncircular sources

  • Xiaoyu Zhang;Haihong Tao;Ziye, Fang;Jian Xie
    • ETRI Journal
    • /
    • v.45 no.3
    • /
    • pp.492-504
    • /
    • 2023
  • Researchers have recently shown an increased interest in estimating the direction-of-arrival (DOA) of wideband noncircular sources, but existing studies have been restricted to subspace-based methods. An off-grid sparse recovery-based algorithm is proposed in this paper to improve the accuracy of existing algorithms in low signal-to-noise ratio situations. The covariance and pseudo covariance matrices can be jointly represented subject to block sparsity constraints by taking advantage of the joint sparsity between signal components and bias. Furthermore, the estimation problem is transformed into a single measurement vector problem utilizing the focused operation, resulting in a significant reduction in computational complexity. The proposed algorithm's error threshold and the Cramer-Rao bound for wideband noncircular DOA estimation are deduced in detail. The proposed algorithm's effectiveness and feasibility are demonstrated by simulation results.

Random Partial Haar Wavelet Transformation for Single Instruction Multiple Threads (단일 명령 다중 스레드 병렬 플랫폼을 위한 무작위 부분적 Haar 웨이블릿 변환)

  • Park, Taejung
    • Journal of Digital Contents Society
    • /
    • v.16 no.5
    • /
    • pp.805-813
    • /
    • 2015
  • Many researchers expect the compressive sensing and sparse recovery problem can overcome the limitation of conventional digital techniques. However, these new approaches require to solve the l1 norm optimization problems when it comes to signal reconstruction. In the signal reconstruction process, the transform computation by multiplication of a random matrix and a vector consumes considerable computing power. To address this issue, parallel processing is applied to the optimization problems. In particular, due to huge size of original signal, it is hard to store the random matrix directly in memory, which makes one need to design a procedural approach in handling the random matrix. This paper presents a new parallel algorithm to calculate random partial Haar wavelet transform based on Single Instruction Multiple Threads (SIMT) platform.

Direction of Arrival Estimation under Aliasing Conditions (앨리아싱 조건에서의 광대역 음향신호의 방위각 추정)

  • 윤병우
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.3
    • /
    • pp.1-6
    • /
    • 2003
  • It is difficult to detect and to track the moving targets like tanks and diesel vehicles due to the variety of terrain and moving of targets. It is possible to be happened the aliasing conditions as the difficulty of antenna deployment in the complex environment like the battle fields. In this paper, we study the problem of detecting and tracking of moving targets which are emitting wideband signals under severe spatial aliasing conditions because of the sparse arrays. We developed a direction of arrival(DOA) estimation algorithm based on subband MUSIC(Multiple Signal Classification) method which produces high-resolution estimation. In this algorithm, the true bearings are invariant regardless of changes of frequency bands while the aliased false bearings vary. As a result, the proposed algorithm overcomes the aliasing effects and improves the localization performance in sparse passive arrays.

  • PDF

3D Deinterlacing Algorithm Based on Wide Sparse Vector Correlations

  • Kim, Yeong-Taeg
    • Journal of Broadcast Engineering
    • /
    • v.1 no.1
    • /
    • pp.44-54
    • /
    • 1996
  • In this paper, we propose a new 3-D deinterlacing algorithm based on wide sparse vector correlations and a vertical edge based motion detection algorithm. which is an extension of the deinterlacing algorithm proposed in [10. llJ by the authors. The prooised algorithm is developed mainly for the format conversion problem encountered in current HDTV system, but can also be aplicable to the double scan conversion problesm frequently encountered in ths NTSC systems. By exploiting the edge oriented spatial interpolation based on the wide vector correlations, visually annoying artifiacts caused by interlacing such as a serrate line. line crawling, a line flicker, and a large area flicker can be remarkably reduced since the use of the wide vectors increases the range of the edge orientations that can be detected, and by exploiting sparse vectors correlations the HjW complexity for realizing the algorithm in applications cam be significantly simplified. Simulations are provided indicating thet the proposed algorithm results in a high performance comparable to the performance of the deinterlacing algorithm. based on the wide vector correlations.

  • PDF

Massive MIMO Channel Estimation Algorithm Based on Weighted Compressed Sensing

  • Lv, Zhiguo;Wang, Weijing
    • Journal of Information Processing Systems
    • /
    • v.17 no.6
    • /
    • pp.1083-1096
    • /
    • 2021
  • Compressed sensing-based matching pursuit algorithms can estimate the sparse channel of massive multiple input multiple-output systems with short pilot sequences. Although they have the advantages of low computational complexity and low pilot overhead, their accuracy remains insufficient. Simply multiplying the weight value and the estimated channel obtained in different iterations can only improve the accuracy of channel estimation under conditions of low signal-to-noise ratio (SNR), whereas it degrades accuracy under conditions of high SNR. To address this issue, an improved weighted matching pursuit algorithm is proposed, which obtains a suitable weight value uop by training the channel data. The step of the weight value increasing with successive iterations is calculated according to the sparsity of the channel and uop. Adjusting the weight value adaptively over the iterations can further improve the accuracy of estimation. The results of simulations conducted to evaluate the proposed algorithm show that it exhibits improved performance in terms of accuracy compared to previous methods under conditions of both high and low SNR.

Super-Resolution Using NLSA Mechanism (비지역 희소 어텐션 메커니즘을 활용한 초해상화)

  • Kim, Sowon;Park, Hanhoon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.1
    • /
    • pp.8-14
    • /
    • 2022
  • With the development of deep learning, super-resolution (SR) methods have tried to use deep learning mechanism, instead of using simple interpolation. SR methods using deep learning is generally based on convolutional neural networks (CNN), but recently, SR researches using attention mechanism have been actively conducted. In this paper, we propose an approach of improving SR performance using one of the attention mechanisms, non-local sparse attention (NLSA). Through experiments, we confirmed that the performance of the existing SR models, IMDN, CARN, and OISR-LF-s can be improved by using NLSA.

Nonuniform Delayless Subband Filter Structure with Tree-Structured Filter Bank (트리구조의 비균일한 대역폭을 갖는 Delayless 서브밴드 필터 구조)

  • 최창권;조병모
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.13-20
    • /
    • 2001
  • Adaptive digital filters with long impulse response such as acoustic echo canceller and active noise controller suffer from slow convergence and computational burden. Subband techniques and multirate signal processing have been recently developed to improve the problem of computational complexity and slow convergence in conventional adaptive filter. Any FIR transfer function can be realized as a serial connection of interpolators followed by subfilters with a sparse impulse response. In this case, each interpolator which is related to the column vector of Hadamard matrix has band-pass magnitude response characteristics shifted uniformly. Subband technique using Hadamard transform and decimation of subband signal to reduce sampling rate are adapted to system modeling and acoustic noise cancellation In this paper, delayless subband structure with nonuniform bandwidth has been proposed to improve the performance of the convergence speed without aliasing due to decimation, where input signal is split into subband one using tree-structured filter bank, and the subband signal is decimated by a decimator to reduce the sampling rate in each channel, then subfilter with sparse impulse response is transformed to full band adaptive filter coefficient using Hadamard transform. It is shown by computer simulations that the proposed method can be adapted to general adaptive filtering.

  • PDF

Analysis of Signal Recovery for Compressed Sensing using Deep Learning Technique (딥러닝 기술을 활용한 압축센싱 신호 복원방법 분석)

  • Seong, Jin-Taek
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.4
    • /
    • pp.257-267
    • /
    • 2017
  • Compressed Sensing(CS) deals with linear inverse problems. The theoretical results of CS have had an impact on inference problems and presented amazing research achievements in the related fields including signal processing and information theory. However, in order for CS to be applied in practical environments, there are two significant challenges to be solved. One is to guarantee in real time recovery of CS signals, and the other is that the signals have to be sparse. To this end, the latest researches using deep learning technology have emerged. In this paper, we consider CS problems based on deep learning and discuss the latest research results. And the approaches for CS signal reconstruction using deep learning show superior results in terms of recovery time and performance. It is expected that the approaches for CS reconstruction using deep learning shown in recent studies can not only raise the possibility of utilization of CS, but also be highly exploited in the fields of signal processing and communication areas.

Evaluation of Resolution Improvement Ability of a DSP Technique for Filter-Array-Based Spectrometers

  • Oliver, J.;Lee, Woong-Bi;Park, Sang-Jun;Lee, Heung-No
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.6
    • /
    • pp.497-502
    • /
    • 2013
  • In this paper, we aim to evaluate the performance of the digital signal processing (DSP) algorithm used in [8] in order to improve the resolution of spectrometers with fixed number of low-cost, non-ideal filters. In such spectrometers, the resolution is limited by the number of filters. We aim to demonstrate via new experiments that the resolution improvement by six times over the conventional limit is possible by using the DSP algorithm as claimed by [8].

Development of A Recovery Algorithm for Sparse Signals based on Probabilistic Decoding (확률적 희소 신호 복원 알고리즘 개발)

  • Seong, Jin-Taek
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.5
    • /
    • pp.409-416
    • /
    • 2017
  • In this paper, we consider a framework of compressed sensing over finite fields. One measurement sample is obtained by an inner product of a row of a sensing matrix and a sparse signal vector. A recovery algorithm proposed in this study for sparse signals based probabilistic decoding is used to find a solution of compressed sensing. Until now compressed sensing theory has dealt with real-valued or complex-valued systems, but for the processing of the original real or complex signals, the loss of the information occurs from the discretization. The motivation of this work can be found in efforts to solve inverse problems for discrete signals. The framework proposed in this paper uses a parity-check matrix of low-density parity-check (LDPC) codes developed in coding theory as a sensing matrix. We develop a stochastic algorithm to reconstruct sparse signals over finite field. Unlike LDPC decoding, which is published in existing coding theory, we design an iterative algorithm using probability distribution of sparse signals. Through the proposed recovery algorithm, we achieve better reconstruction performance as the size of finite fields increases. Since the sensing matrix of compressed sensing shows good performance even in the low density matrix such as the parity-check matrix, it is expected to be actively used in applications considering discrete signals.