• Title/Summary/Keyword: Sparse constraint

Search Result 22, Processing Time 0.023 seconds

SPARSE ICA: EFFICIENT CODING OF NATURAL SCENES/ (Sparse ICA: 자연영상의 효율적인 코딩\ulcorner)

  • 최승진;이오영
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10b
    • /
    • pp.470-472
    • /
    • 1999
  • Sparse coding은 최소한의 active한 (non-orthogonal) basis vector를 이용하여 데이터를 표시하는 하나의 방법이다. Sparse coding에서 basis coefficient들이 statistically independent 하다는 constraint를 주기에 sparse coding은 independent component analysis(ICA)와 밀접한 관계를 가지고 있다. 본 논문에서는 sparse representation을 위하여 super-Gaussian prior를 이용한 ICA, 즉 sparse ICA 방법을 제시한다. Sparse ICA 방법을 이용하여 natural scenes의 basis vector를 찾고 이와 sparse coding과의 관계를 고찰한다. 여러 가지 super-Gaussian prior들을 고려하지 않고 이들이 ICA에 미치는 영향에 대해 살펴본다.

  • PDF

Feature Extraction via Sparse Difference Embedding (SDE)

  • Wan, Minghua;Lai, Zhihui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.7
    • /
    • pp.3594-3607
    • /
    • 2017
  • The traditional feature extraction methods such as principal component analysis (PCA) cannot obtain the local structure of the samples, and locally linear embedding (LLE) cannot obtain the global structure of the samples. However, a common drawback of existing PCA and LLE algorithm is that they cannot deal well with the sparse problem of the samples. Therefore, by integrating the globality of PCA and the locality of LLE with a sparse constraint, we developed an improved and unsupervised difference algorithm called Sparse Difference Embedding (SDE), for dimensionality reduction of high-dimensional data in small sample size problems. Significantly differing from the existing PCA and LLE algorithms, SDE seeks to find a set of perfect projections that can not only impact the locality of intraclass and maximize the globality of interclass, but can also simultaneously use the Lasso regression to obtain a sparse transformation matrix. This characteristic makes SDE more intuitive and more powerful than PCA and LLE. At last, the proposed algorithm was estimated through experiments using the Yale and AR face image databases and the USPS handwriting digital databases. The experimental results show that SDE outperforms PCA LLE and UDP attributed to its sparse discriminating characteristics, which also indicates that the SDE is an effective method for face recognition.

Sparse Reconfigurable Adaptive Filter with an Upgraded Connection Constraint Algorithm

  • Chang, Hong;Hwang, Suk-Seung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.4
    • /
    • pp.305-309
    • /
    • 2011
  • A sparse reconfigurable adaptive filter (SRAF) based on a photonic switch determines the appropriate time delays and weight values for an optical switch implementation of tapped-delay-line (TDL) systems. It is well known that the choice of switch delays is significantly important for efficiently implementing the SRAF. If the same values exist as calculating the sum of weight magnitudes for implementing the connection constraint required by the SRAF, conventional connection algorithm based on sequentially selection the maximum elements might not work perfectly. In an effort to increase the effectiveness of system identification, an upgraded connection algorithm used progressive calculation to obtain the better solution is considered in this paper. The performance of the proposed connection constraint algorithm is illustrated by computer simulation for a system identification application.

Transformation of Constraint-based Analyses for Efficient Analysis of Java Programs (Java 프로그램의 효율적인 분석을 위한 집합-기반 분석의 변환)

  • Jo, Jang-Wu;Chang, Byeong-Mo
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.7
    • /
    • pp.510-520
    • /
    • 2002
  • This paper proposes a transformation-based approach to design constraint-based analyses for Java at a coarser granularity. In this approach, we design a less or equally precise but more efficient version of an original analysis by transforming the original construction rules into new ones. As applications of this rule transformation, we provide two instances of analysis design by rule-transformation. The first one designs a sparse version of class analysis for Java and the second one deals with a sparse exception analysis for Java. Both are designed based on method-level, and the sparse exception analysis is shown to give the same information for every method as the original analysis.

Facial Feature Recognition based on ASNMF Method

  • Zhou, Jing;Wang, Tianjiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.12
    • /
    • pp.6028-6042
    • /
    • 2019
  • Since Sparse Nonnegative Matrix Factorization (SNMF) method can control the sparsity of the decomposed matrix, and then it can be adopted to control the sparsity of facial feature extraction and recognition. In order to improve the accuracy of SNMF method for facial feature recognition, new additive iterative rules based on the improved iterative step sizes are proposed to improve the SNMF method, and then the traditional multiplicative iterative rules of SNMF are transformed to additive iterative rules. Meanwhile, to further increase the sparsity of the basis matrix decomposed by the improved SNMF method, a threshold-sparse constraint is adopted to make the basis matrix to a zero-one matrix, which can further improve the accuracy of facial feature recognition. The improved SNMF method based on the additive iterative rules and threshold-sparse constraint is abbreviated as ASNMF, which is adopted to recognize the ORL and CK+ facial datasets, and achieved recognition rate of 96% and 100%, respectively. Meanwhile, from the results of the contrast experiments, it can be found that the recognition rate achieved by the ASNMF method is obviously higher than the basic NMF, traditional SNMF, convex nonnegative matrix factorization (CNMF) and Deep NMF.

Determination of Parameter Value in Constraint of Sparse Spectrum Fitting DOA Estimation Algorithm (희소성 스펙트럼 피팅 도래각 추정 알고리즘의 제한조건에 포함된 상수 결정법)

  • Cho, Yunseung;Paik, Ji-Woong;Lee, Joon-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.8
    • /
    • pp.917-920
    • /
    • 2016
  • SpSF algorithm is direction-of-arrival estimation algorithm based on sparse representation of incident signlas. Cost function to be optimized for DOA estimation is multi-dimensional nonlinear function, which is hard to handle for optimization. After some manipulation, the problem can be cast into convex optimiztion problem. Convex optimization problem tuns out to be constrained optimization problem, where the parameter in the constraint has to be determined. The solution of the convex optimization problem is dependent on the specific parameter value in the constraint. In this paper, we propose a rule-of-thumb for determining the parameter value in the constraint. Based on the fact that the noise in the array elements is complex Gaussian distributed with zero mean, the average of the Frobenius norm of the matrix in the constraint can be rigorously derived. The parameter in the constrint is set to be two times the average of the Frobenius norm of the matrix in the constraint. It is shown that the SpSF algorithm actually works with the parameter value set by the method proposed in this paper.

Sparse Representation based Two-dimensional Bar Code Image Super-resolution

  • Shen, Yiling;Liu, Ningzhong;Sun, Han
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.4
    • /
    • pp.2109-2123
    • /
    • 2017
  • This paper presents a super-resolution reconstruction method based on sparse representation for two-dimensional bar code images. Considering the features of two-dimensional bar code images, Kirsch and LBP (local binary pattern) operators are used to extract the edge gradient and texture features. Feature extraction is constituted based on these two features and additional two second-order derivatives. By joint dictionary learning of the low-resolution and high-resolution image patch pairs, the sparse representation of corresponding patches is the same. In addition, the global constraint is exerted on the initial estimation of high-resolution image which makes the reconstructed result closer to the real one. The experimental results demonstrate the effectiveness of the proposed algorithm for two-dimensional bar code images by comparing with other reconstruction algorithms.

Relocation of a Mobile Robot Using Sparse Sonar Data

  • Lim, Jong-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.217-224
    • /
    • 2001
  • In this paper, the relocation of a mobile robot is considered such that it enables the robot to determine its position with respect to a global reference frame without any $\alpha$ priori position information. The robot acquires sonar range data from a two-dimensional model composed of planes, corners, edges, and cylinders. Considering individual range as data features, the robot searches the best position where the data features of a position matches the environmental model using a constraint-based search method. To increase the search efficiency, a hypothesize and-verify technique is employed in which the position of the robot is calculated from all possible combinations of two range returns that satisfy the sonar sensing model. Accurate relocation is demonstrated with the results from sets of experiments using sparse sonar data in the presence of unmodeled objects.

  • PDF

Human Activities Recognition Based on Skeleton Information via Sparse Representation

  • Liu, Suolan;Kong, Lizhi;Wang, Hongyuan
    • Journal of Computing Science and Engineering
    • /
    • v.12 no.1
    • /
    • pp.1-11
    • /
    • 2018
  • Human activities recognition is a challenging task due to its complexity of human movements and the variety performed by different subjects for the same action. This paper presents a recognition algorithm by using skeleton information generated from depth maps. Concatenating motion features and temporal constraint feature produces feature vector. Reducing dictionary scale proposes an improved fast classifier based on sparse representation. The developed method is shown to be effective by recognizing different activities on the UTD-MHAD dataset. Comparison results indicate superior performance of our method over some existing methods.

Multiscale Spatial Position Coding under Locality Constraint for Action Recognition

  • Yang, Jiang-feng;Ma, Zheng;Xie, Mei
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1851-1863
    • /
    • 2015
  • – In the paper, to handle the problem of traditional bag-of-features model ignoring the spatial relationship of local features in human action recognition, we proposed a Multiscale Spatial Position Coding under Locality Constraint method. Specifically, to describe this spatial relationship, we proposed a mixed feature combining motion feature and multi-spatial-scale configuration. To utilize temporal information between features, sub spatial-temporal-volumes are built. Next, the pooled features of sub-STVs are obtained via max-pooling method. In classification stage, the Locality-Constrained Group Sparse Representation is adopted to utilize the intrinsic group information of the sub-STV features. The experimental results on the KTH, Weizmann, and UCF sports datasets show that our action recognition system outperforms the classical local ST feature-based recognition systems published recently.