• Title/Summary/Keyword: Sparse array

Search Result 36, Processing Time 0.026 seconds

PARAFAC Tensor Reconstruction for Recommender System based on Apache Spark (아파치 스파크에서의 PARAFAC 분해 기반 텐서 재구성을 이용한 추천 시스템)

  • Im, Eo-Jin;Yong, Hwan-Seung
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.4
    • /
    • pp.443-454
    • /
    • 2019
  • In recent years, there has been active research on a recommender system that considers three or more inputs in addition to users and goods, making it a multi-dimensional array, also known as a tensor. The main issue with using tensor is that there are a lot of missing values, making it sparse. In order to solve this, the tensor can be shrunk using the tensor decomposition algorithm into a lower dimensional array called a factor matrix. Then, the tensor is reconstructed by calculating factor matrices to fill original empty cells with predicted values. This is called tensor reconstruction. In this paper, we propose a user-based Top-K recommender system by normalized PARAFAC tensor reconstruction. This method involves factorization of a tensor into factor matrices and reconstructs the tensor again. Before decomposition, the original tensor is normalized based on each dimension to reduce overfitting. Using the real world dataset, this paper shows the processing of a large amount of data and implements a recommender system based on Apache Spark. In addition, this study has confirmed that the recommender performance is improved through normalization of the tensor.

A Wavefront Array Processor Utilizing a Recursion Equation for ME/MC in the frequency Domain (주파수 영역에서의 움직임 예측 및 보상을 위한 재귀 방정식을 이용한 웨이브프런트 어레이 프로세서)

  • Lee, Joo-Heung;Ryu, Chul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.10C
    • /
    • pp.1000-1010
    • /
    • 2006
  • This paper proposes a new architecture for DCT-based motion estimation and compensation. Previous methods do riot take sufficient advantage of the sparseness of 2-D DCT coefficients to reduce execution time. We first derive a recursion equation to perform DCT domain motion estimation more efficiently; we then use it to develop a wavefront array processor (WAP) consisting of processing elements. In addition, we show that the recursion equation enables motion predicted images with different frequency bands, for example, from the images with low frequency components to the images with low and high frequency components. The wavefront way Processor can reconfigure to different motion estimation algorithms, such as logarithmic search and three step search, without architectural modifications. These properties can be effectively used to reduce the energy required for video encoding and decoding. The proposed WAP architecture achieves a significant reduction in computational complexity and processing time. It is also shown that the motion estimation algorithm in the transform domain using SAD (Sum of Absolute Differences) matching criterion maximizes PSNR and the compression ratio for the practical video coding applications when compared to tile motion estimation algorithm in the spatial domain using either SAD or SSD.

다중채널 압축센싱

  • Kim, Jong-Min;Lee, Ok-Gyun;Ye, Jong-Cheol
    • The Magazine of the IEIE
    • /
    • v.38 no.1
    • /
    • pp.44-49
    • /
    • 2011
  • 다중채널 압축센싱(multi-channel compressive sensing) 문제는 0이 아닌 성분이 공통된 위치에 분포하는 벡터들을 복원하는 방법을 다루는 문제이며 레이다의 도착방향 추정 문제, 역산란 문제, 산란광 단층촬영과 같은 많은 실용적인 문제에 응용될 수 있다. 압축 센싱 문제는 성긴(sparse) 속성을 갖는 벡터를 상당히 높은 확률로 복원시킬 수 있음이 밝혀져 있다. 이로 인해 기존의 압축 센싱 방법이 다중채널 압축센싱에서도 많이 활용되어 왔으며, 측정 벡터의 개수가 적을 때에도 높은 확률로 입력 신호를 복원할 수 있다. 그러나, 측정 벡터의 개수가 많아질수록, 기존의 압축센싱 알고리즘을 이용했을 때의 성능은 복수신호분리 (MUSIC) 알고리즘과 같이 배열신호처리(array signal processing)에서 활용되는 방법을 적용했을 때보다 더 나쁜 특성을 보인다. 이러한 기존 방법의 문제점으로 인해 우리는 새로운 다중채널 압축센싱 알고리즘을 제시하고자 하며, 이는 기존의 압축센싱 이론과 배열 신호처리 알고리즘을 개별적으로 적용할 때 가지는 한계를 극복할 수 있게 해준다.

  • PDF

Evaluation of Resolution Improvement Ability of a DSP Technique for Filter-Array-Based Spectrometers

  • Oliver, J.;Lee, Woong-Bi;Park, Sang-Jun;Lee, Heung-No
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.6
    • /
    • pp.497-502
    • /
    • 2013
  • In this paper, we aim to evaluate the performance of the digital signal processing (DSP) algorithm used in [8] in order to improve the resolution of spectrometers with fixed number of low-cost, non-ideal filters. In such spectrometers, the resolution is limited by the number of filters. We aim to demonstrate via new experiments that the resolution improvement by six times over the conventional limit is possible by using the DSP algorithm as claimed by [8].

Skew-Aware Partitioning of Multi-Dimensional Array Data (다차원 배열 데이터에 대한 편향 인지 분할 기법)

  • Kim, MyeongJin;Oh, SoHyeon;Shin, YoonJae;Choe, YeonJeong;Lee, Ki Yong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.1223-1225
    • /
    • 2015
  • 본 논문에서는 여러 과학분야에서 사용되는 대용량 배열 데이터를 병렬처리를 위해 효율적으로 분할하는 기법을 제안한다. 실제 배열 데이터는 희소(sparse) 배열로 구성된 경우가 많아 기존의 chunking 기법을 사용하면 일부 chunk에게만 데이터가 밀집되는 편향 현상이 발생하게 된다. 이러한 문제를 극복하기 위해 본 논문에서는 k-d tree와 유사한 방법으로 공간을 분할하고, 분할된 공간을 chunk로 두는 방법을 제안한다. 제안 방법에 의해 각 chunk는 데이터의 밀집 정도가 비슷하게 되어 효과적인 부하분산(load balancing)이 이루어질 수 있다.

Off-grid direction-of-arrival estimation for wideband noncircular sources

  • Xiaoyu Zhang;Haihong Tao;Ziye, Fang;Jian Xie
    • ETRI Journal
    • /
    • v.45 no.3
    • /
    • pp.492-504
    • /
    • 2023
  • Researchers have recently shown an increased interest in estimating the direction-of-arrival (DOA) of wideband noncircular sources, but existing studies have been restricted to subspace-based methods. An off-grid sparse recovery-based algorithm is proposed in this paper to improve the accuracy of existing algorithms in low signal-to-noise ratio situations. The covariance and pseudo covariance matrices can be jointly represented subject to block sparsity constraints by taking advantage of the joint sparsity between signal components and bias. Furthermore, the estimation problem is transformed into a single measurement vector problem utilizing the focused operation, resulting in a significant reduction in computational complexity. The proposed algorithm's error threshold and the Cramer-Rao bound for wideband noncircular DOA estimation are deduced in detail. The proposed algorithm's effectiveness and feasibility are demonstrated by simulation results.

Design of Low-Power Sparse Data Processing Unit for Systolic Array (시스톨릭 어레이를 위한 저전력 희소 데이터 프로세싱 유닛 설계)

  • Park, Judong;Kong, Joonho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.27-29
    • /
    • 2022
  • 최근 인공지능 애플리케이션이 많이 사용되고 이러한 애플리케이션에서 데이터 희소성이 높아지고 있어 이러한 희소 데이터를 효율적으로 처리하기 위한 하드웨어 구조들이 많이 소개되고 있다. 본 논문에서는 희소 데이터 처리 시 전력 소모량을 낮출 수 있는 새로운 하드웨어 구조를 제안한다. 일반적인 인공지능 하드웨어에서 많이 사용되는 시스톨릭 어레이 구조를 기반으로 하며, 제안된 저전력 PE 가 희소 데이터 처리시 희소하지 않은 데이터 처리 시보다 최대 2 배의 전력 소모량을 줄일 수 있는 것으로 나타났다.

Design of the Adaptive Systolic Array Architecture for Efficient Sparse Matrix Multiplication (희소 행렬 곱셈을 효율적으로 수행하기 위한 유동적 시스톨릭 어레이 구조 설계)

  • Seo, Juwon;Kong, Joonho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.24-26
    • /
    • 2022
  • 시스톨릭 어레이는 DNN training 등 인공지능 연산의 대부분을 차지하는 행렬 곱셈을 수행하기 위한 하드웨어 구조로 많이 사용되지만, sparsity 가 높은 행렬을 연산할 때 불필요한 동작으로 인해 효율성이 크게 떨어진다. 본 논문에서 제안된 유동적 시스톨릭 어레이는 matrix condensing, weight switching, 그리고 direct output path 의 방법과 구조를 통해 sparsity 가 높은 행렬 곱셈의 수행 사이클을 줄일 수 있다. 시뮬레이션을 통해 기존 시스톨릭 어레이와 유동적 시스톨릭 어레이의 성능을 비교하였으며 8×8, 16×16, 32×32 의 크기를 가진 행렬을 동일 크기의 시스톨릭 어레이로 연산하였을 때 필요 사이클 수를 최대 12 사이클 절감할 수 있는 것을 확인하였다.

Study on Multiple sparse matrix-matrix multiplication hardware accelerator (다중 희소 행렬-행렬 곱셈 하드웨어 가속기 연구)

  • Tae-Hyoung Kim;Yeong-Pil Cho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2024.05a
    • /
    • pp.47-50
    • /
    • 2024
  • 희소 행렬은 대부분의 요소가 0 인 행렬이다. 이러한 희소 행렬-행렬 곱셈을 수행할 경우 0 인 데이터 또한 곱셈을 수행하니 불필요한 연산이 발생한다. 이러한 문제를 해결하고자 행렬 압축 알고리즘 또는 곱셈의 부분합의 수를 줄이는 연구들이 활발히 진행 중이다. 하지만 현재의 연구들은 주로 단일 행렬 연산에 집중되어 있어 FPGA(Field Programmable Gate Array)와 특정 용도로 사용하는 가속기에서는 리소스를 충분히 활용하지 못해 비효율적이다. 본 연구는 FPGA 의 모든 리소스를 사용하여 다중 희소 행렬 곱셈을 수행하는 아키텍처를 제안한다.

Determination of Parameter Value in Constraint of Sparse Spectrum Fitting DOA Estimation Algorithm (희소성 스펙트럼 피팅 도래각 추정 알고리즘의 제한조건에 포함된 상수 결정법)

  • Cho, Yunseung;Paik, Ji-Woong;Lee, Joon-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.8
    • /
    • pp.917-920
    • /
    • 2016
  • SpSF algorithm is direction-of-arrival estimation algorithm based on sparse representation of incident signlas. Cost function to be optimized for DOA estimation is multi-dimensional nonlinear function, which is hard to handle for optimization. After some manipulation, the problem can be cast into convex optimiztion problem. Convex optimization problem tuns out to be constrained optimization problem, where the parameter in the constraint has to be determined. The solution of the convex optimization problem is dependent on the specific parameter value in the constraint. In this paper, we propose a rule-of-thumb for determining the parameter value in the constraint. Based on the fact that the noise in the array elements is complex Gaussian distributed with zero mean, the average of the Frobenius norm of the matrix in the constraint can be rigorously derived. The parameter in the constrint is set to be two times the average of the Frobenius norm of the matrix in the constraint. It is shown that the SpSF algorithm actually works with the parameter value set by the method proposed in this paper.