• Title/Summary/Keyword: Sparse Point Clouds

Search Result 7, Processing Time 0.021 seconds

Human Assisted Fitting and Matching Primitive Objects to Sparse Point Clouds for Rapid Workspace Modeling in Construction Automation (-건설현장에서의 시공 자동화를 위한 Laser Sensor기반의 Workspace Modeling 방법에 관한 연구-)

  • KWON SOON-WOOK
    • Korean Journal of Construction Engineering and Management
    • /
    • v.5 no.5 s.21
    • /
    • pp.151-162
    • /
    • 2004
  • Current methods for construction site modeling employ large, expensive laser range scanners that produce dense range point clouds of a scene from different perspectives. Days of skilled interpretation and of automatic segmentation may be required to convert the clouds to a finished CAD model. The dynamic nature of the construction environment requires that a real-time local area modeling system be capable of handling a rapidly changing and uncertain work environment. However, in practice, large, simple, and reasonably accurate embodying volumes are adequate feedback to an operator who, for instance, is attempting to place materials in the midst of obstacles with an occluded view. For real-time obstacle avoidance and automated equipment control functions, such volumes also facilitate computational tractability. In this research, a human operator's ability to quickly evaluate and associate objects in a scene is exploited. The operator directs a laser range finder mounted on a pan and tilt unit to collect range points on objects throughout the workspace. These groups of points form sparse range point clouds. These sparse clouds are then used to create geometric primitives for visualization and modeling purposes. Experimental results indicate that these models can be created rapidly and with sufficient accuracy for automated obstacle avoidance and equipment control functions.

ASPPMVSNet: A high-receptive-field multiview stereo network for dense three-dimensional reconstruction

  • Saleh Saeed;Sungjun Lee;Yongju Cho;Unsang Park
    • ETRI Journal
    • /
    • v.44 no.6
    • /
    • pp.1034-1046
    • /
    • 2022
  • The learning-based multiview stereo (MVS) methods for three-dimensional (3D) reconstruction generally use 3D volumes for depth inference. The quality of the reconstructed depth maps and the corresponding point clouds is directly influenced by the spatial resolution of the 3D volume. Consequently, these methods produce point clouds with sparse local regions because of the lack of the memory required to encode a high volume of information. Here, we apply the atrous spatial pyramid pooling (ASPP) module in MVS methods to obtain dense feature maps with multiscale, long-range, contextual information using high receptive fields. For a given 3D volume with the same spatial resolution as that in the MVS methods, the dense feature maps from the ASPP module encoded with superior information can produce dense point clouds without a high memory footprint. Furthermore, we propose a 3D loss for training the MVS networks, which improves the predicted depth values by 24.44%. The ASPP module provides state-of-the-art qualitative results by constructing relatively dense point clouds, which improves the DTU MVS dataset benchmarks by 2.25% compared with those achieved in the previous MVS methods.

"MODEL SPELL CHECKER" FOR PRIMITIVE-BASED AS-BUILT MODELING IN CONSTRUCTION

  • Kwon Soon-Wook;Frederic Bosche;Huh Youngki
    • Korean Journal of Construction Engineering and Management
    • /
    • v.5 no.5 s.21
    • /
    • pp.163-171
    • /
    • 2004
  • This research investigates a Modeling Spell Checker that, similarly to Word Spell Checker for word processing software, would conform as-built 3D models to standard construction rules. The work is focused on the study of pipe-spools. Specifically pipe diameters and coplanarity are checked and corrected by the Modeling Spell Checker, and elbows are deduced and modeled to complete models. Experiments have been conducted by scanning scenes of increasing levels of complexity regarding the number of pipes, the types of elbows and the number of planes constituting pipe-spools. For building models of pipes from sensed data, a modeling method, developed at the University of Texas at Austin, that is based on the acquisition of sparse point clouds and the human ability to recognize geometric shapes has been used Results show that primitive-based models obtained after scanning construction sites can be corrected and even improved automatically, and, since such models are expected to be used as feedback control models for equipment operators, the higher modeling accuracy achieved with the Modeling Spell Checker could potentially increase the level of safety in construction. Result also show that some improvements are still needed especially regarding the co-planarity of pipes. In addition, results show that the modeling accuracy significantly depends on the primitive modeling method, and improvement of that method would positively impact the modeling spell checker.

General Local Transformer Network in Weakly-supervised Point Cloud Analysis (약간 감독되는 포인트 클라우드 분석에서 일반 로컬 트랜스포머 네트워크)

  • Anh-Thuan Tran;Tae Ho Lee;Hoanh-Su Le;Philjoo Choi;Suk-Hwan Lee;Ki-Ryong Kwon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.528-529
    • /
    • 2023
  • Due to vast points and irregular structure, labeling full points in large-scale point clouds is highly tedious and time-consuming. To resolve this issue, we propose a novel point-based transformer network in weakly-supervised semantic segmentation, which only needs 0.1% point annotations. Our network introduces general local features, representing global factors from different neighborhoods based on their order positions. Then, we share query point weights to local features through point attention to reinforce impacts, which are essential in determining sparse point labels. Geometric encoding is introduced to balance query point impact and remind point position during training. As a result, one point in specific local areas can obtain global features from corresponding ones in other neighborhoods and reinforce from its query points. Experimental results on benchmark large-scale point clouds demonstrate our proposed network's state-of-the-art performance.

Optimum Weight in Spline for Surface Model

  • Shon, Ho-Woong;Oh, Seok-Hoon;Kim, Young-Kyung
    • Journal of the Korean Geophysical Society
    • /
    • v.8 no.1
    • /
    • pp.23-33
    • /
    • 2005
  • The digital surface model (DSM) is used for several purposes in photogrammetry, remote sensing and laser scanned data such as orthoimage production, contours erivation, extraction of height information. Creation of a surface model from point-clouds (3-D sparse points) that can be derived from stereo imagery and range data (e.g. laser scanned data) can be done with several mathematical interpolation models. In this paper, thin-plate-spline (TPS) is used for digital surface modeling. Determination of suitable weight is an important problem in thin-plate function for a surface. The Voronoi algorithm has been proposed as a method for determination of the weight in thin-plate-spline. In this paper, methods has been tested for different surfaces. The results show that thin-plate-spline can be independent of weight.

  • PDF

Gradient field based method for segmenting 3D point cloud (Gradient Field 기반 3D 포인트 클라우드 지면분할 기법)

  • Vu, Hoang;Chu, Phuong;Cho, Seoungjae;Zhang, Weiqiang;Wen, Mingyun;Sim, Sungdae;Kwak, Kiho;Cho, Kyungeun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.10a
    • /
    • pp.733-734
    • /
    • 2016
  • This study proposes a novel approach for ground segmentation of 3D point cloud. We combine two techniques: gradient threshold segmentation, and mean height evaluation. Acquired 3D point cloud is represented as a graph data structures by exploiting the structure of 2D reference image. The ground parts nearing the position of the sensor are segmented based on gradient threshold technique. For sparse regions, we separate the ground and nonground by using a technique called mean height evaluation. The main contribution of this study is a new ground segmentation algorithm which works well with 3D point clouds from various environments. The processing time is acceptable and it allows the algorithm running in real time.

REAL-TIME 3D MODELING FOR ACCELERATED AND SAFER CONSTRUCTION USING EMERGING TECHNOLOGY

  • Jochen Teizer;Changwan Kim;Frederic Bosche;Carlos H. Caldas;Carl T. Haas
    • International conference on construction engineering and project management
    • /
    • 2005.10a
    • /
    • pp.539-543
    • /
    • 2005
  • The research presented in this paper enables real-time 3D modeling to help make construction processes ultimately faster, more predictable and safer. Initial research efforts used an emerging sensor technology and proved its usefulness in the acquisition of range information for the detection and efficient representation of static and moving objects. Based on the time-of-flight principle, the sensor acquires range and intensity information of each image pixel within the entire sensor's field-of-view in real-time with frequencies of up to 30 Hz. However, real-time working range data processing algorithms need to be developed to rapidly process range information into meaningful 3D computer models. This research ultimately focuses on the application of safer heavy equipment operation. The paper compares (a) a previous research effort in convex hull modeling using sparse range point clouds from a single laser beam range finder, to (b) high-frame rate update Flash LADAR (Laser Detection and Ranging) scanning for complete scene modeling. The presented research will demonstrate if the FlashLADAR technology can play an important role in real-time modeling of infrastructure assets in the near future.

  • PDF