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ABSTRACT The digital surface model (DSM) is used for several purposes in photogrammetry, remote sensing and
laser scanned data such as orthoimage production, contours derivation, extraction of height information.
Creation of a surface model from point-clouds (3-D sparse points) that can be derived from stereo 
imagery and range data (e.g. laser scanned data) can be done with several mathematical interpolation
models. In this paper, thin-plate-spline (TPS) is used for digital surface modeling. Determination of 
suitable weight is an important problem in thin-plate function for a surface. The Voronoi algorithm 
has been proposed as a method for determination of the weight in thin-plate-spline. In this paper, 
methods has been tested for different surfaces. The results show that thin-plate-spline can be independent 
of weight. 
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1. Introduction

TPS is the abbreviation for the Thin Plate Spline, which 

was first introduced by Duchon(1976). It was shown that 

the radial based functions admits a solution and only one 

under the condition that the sample be counted at least on 

three non-aligned points (Meinguest, 1979). TPS has been 

found for so many uses, as an example, geophysical applica-

tions in aeromagnetic & gravimetric surveying (Billings et 

al., 2002), modeling of fingerprints (Bazen and Gerez, 

2002), medical researches (Pedersen, 2000), converting el-

evation contours to a grid (Gousie, 2000; Maillet, 2004). 

In other research it was proved that TPS is compatible to 

Advection-Diffusion equations and is method with the 

unique answer for these kinds of differential equations 

(Boztosun et al., 2002). 

2. Mathematical Model of the Thin-plate-splines

The thin-plate-spline is a physically based on 2-D inter-

polation which represents a thin metal sheet that is con-

strained not to move at the grid points, and is free from any 

external force relied upon control points, from this sight the 

bending energy in control points should have been 

minimized. This bending energy function is shown by neth-

er formulation in 2-D space (Wolfram, 2005),

I [ f(x,y)]= dint R 2 f 2xx+2f
2
xy+ f

2
yy
                     (1)

In Eq. 1, f represents a height in 3D models. This equa-

tion is invariant under translation, rotation, or scaling of ei-

ther set of control points (Maillet, 2004), supports norm of 

the surface and when it is minima it means that the bending 

of the surface in control points have to become minimized 

and the slope variation reduced to minimum in the tangen-

tial plates.

From another point of view the thin-plate-spline as an ap-

proximation for the real surface of the control points will 

enable user to get to the control points as near as possible. 

Therefore a constraint of the distance between the control 

points and surface must also be minimized so L2 norm is 

used,

ETPS= ∑
n

i=1
μ i (f (x i,y i )-z i )

2  

              +dint R 2 f
2
xx+2f

2
xy+ f

2
yy                         (2)

Solving of the bending part of the Eq. 2 is just like inhomoge

neous biharmonic equation, ∇4
f+ ∑

M

m=1
λ mδ(x- xm )

= 0  (Jenkins, 2000), which has a unique answer in the polar 

coordinate system (Maillet, 2004). Duchon and Suber 

(1992) achieved the under gone answer for Eq. 1,
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∑
i
a iφ(r i (x j+y j))

+b 0+b 1x j+b 2y j= z j :(j=1,.....,n)

∑
j
a i=0:∑

j
a ix i=0;∑

j
a iy i=0;                     (3)

By considering μ i weights and adjustment Eq. 2, upper an-

swer can be rewritten as follows:

8πa j
μ j

+∑
i
a iφ(r i (x j+y j))  

+b 0+b 1x j+b 2y j=z j ;(j=1,...,n),         (4)

φ components are radial base functions which can be in 

φ(x,x j )=φ(r j )=r
2m
j log(r j) form and have C

2m-1 

continuity (Boztosun et al., 2002), selection of form of φ 

(order, m) is out of the argument of this article, there

fore based on usual shape of the radial base functions in 

TPS. By assuming m is 1, so φ have C 1 continuity and 

have φ(x,x i )=φ(r i )=r
2
ilog(r i) shape; in which r  

is Euclidean norm in 2D space (r i (x j,y j )=

(x j-x i)
2+(y j-y i)

2 ).

Duchon offered a straight solution for this equation series 

which they are linear system with n+3 equations,

             

ꀌ

ꀘ

︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳

ꀍ

ꀙ

︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳

8π/μ 1 c 21 ․ ․ ․ c n1 1 x 1 y 1
c 21 8π/μ 2 ․ ․ ․ c n2 1 x 2 y 2
․ ․ ․ ․ ․ ․ ․ ․ ․
․ ․ ․ ․ ․ ․ ․ ․ ․
c 1n c 2n ․ ․ ․ 8π/μ n 1 x n y n
1 1 . . . 1 0 0 0
x 1 x 2 . . . x n 0 0 0
y 1 y 2 . . . y n 0 0 0

ꀌ

ꀘ

︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳

ꀍ

ꀙ

︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳

a 1
a 2
.
.
a n
b 0
b 1
b 2

=

ꀌ

ꀘ

︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳

ꀍ

ꀙ

︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳

z 1
z 2
.
.
z n
0
0
0

;                                                            (5)

c ij=φ(r i (x j,y j ))

Which can be written as:

( )C F
F
T
0 ( )
a
b
=( )Z0 .

Coefficient matrix ( )C F
F
T
0
 is a positive symmetrical 

matrix. It was suggested that solving the system 5 by QR 

factorization as follows:

Where Q  is an n by n orthogonal matrix and R  is n by 

n by 3 matrix in the following form:

R=( )U0 ;  Dim[U]=3×3.

With U (3, 3) triangular superior matrix. F is of rank3, 

since there are at least three non-aligned points, therefore 

R is of rank 3, thus U is invertible,

                     

( )C F
F
T
0
= ( )Q 0
0 I ( )Q

T
CQ R
R 0 ( )Q

T
0

0 I
;

  I=
ꀌ

ꀘ

︳︳︳

ꀍ

ꀙ

︳︳︳

1 0 0
0 1 0
0 0 1

                                                     (7)

By replacing Eq. 7 in Eq. 5 we have:

             

( )Q 0
0 I ( )Q TCQ R

R 0 ( )Q T 0
0 I ( )

a
b
=( )Z0 ⇒

( ( )Q 0
0 I ( )Q 0

0 I ( )Q
T
CQ R
R 0 ( )Q

T
a
b
  

= ( )Q 0
0 I ( )

Z
0
)
(Q -1 =Q T)

⇒.                               (8)

 { ( )Q
T
CQ R
R 0 ( )

d
b ( )Q

T
Z
0

a=Qd 
And by supersede Q= (Q 1 n×3Q 2 n×n-3) and 

d=ꀌ

ꀘ

︳︳︳︳︳︳

ꀍ

ꀙ

︳︳︳︳︳︳

d 1
3×1

d 2
(n-3)×1

 one can write:

                   

ꀌ

ꀘ

︳︳︳︳︳︳

ꀍ

ꀙ

︳︳︳︳︳︳

Q
T
1CQ 1 Q

T
1CQ 2 U

Q
T
2CQ 1 Q

T
2CQ 2 0

U
T

0 0

ꀌ

ꀘ

︳︳︳︳

ꀍ

ꀙ

︳︳︳︳

d 1
d 2
d 3

=

ꀌ

ꀘ

︳︳︳︳︳

ꀍ

ꀙ

︳︳︳︳︳

Q
T
1Z

Q
T
2Z
0
; .               (9)

 a=Q 1d 1+Q 2d 2

 One deduces UTd 1=0, thus d 1=0 , from equation 

Q
T
2CQ 2d 2=Q

T
2Z, one deduces d 2, from where a=

Q 2d 2 ; from the equation Q
T
1CQ 2d 2+Ub=Q

T
1Z,  

 one can finally extract b.
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It is necessary to notice that the C matrix is full. There- 

fore the matrix QT 1CQ 2 is also full. So, if we have more 

than 3 control points this method can never be singular, but 

weights μ i in Eq. 4 are one of the weaknesses of these 

methods and answers touched by them, we will discuss 

weights in TPS in the following section:

3. WEIGHT COMPARISON ON TPS

For simplicity of discussion, Eq. 2 can be rewriten as:

Ep=p ∑
n

i=1
r i(f(x i,y i )-z i)

2+ I(f ),                    (10)

With P= ∑
n

i=1
μ i and r i=

μ i
P
 that r i is the relative 

weight of the point (x i,y i,z i) and the P weight fixes the 

importance of the adjustment criterion,

e(f)= ∑
n

i=1
r i(f(x i,y i)-z i)

2
,                             (11)

In relation to the curvature criterion I( f ).

3.1 Examination of the Effect of the Weight P

To P > 0  , corresponds a unique thin plate spline surface, 

denoted f p, minimizing, Ep(f )= P×e( f )+ I( f ); in the 

same way, to Q > 0 corresponds the surface f Q , minimiz

ing, EQ(f )= Q×e( f )+ I(f ).

Because of the minimal character of EP(f P ) and of 

EQ(f Q ), one has,

EQ(f Q )≤EQ(f P )

EP(fP )≤EP(fQ )                                                  (12)

Or else:

P×e( f P)= I(f P)≤P×e( f Q)+ I(f qQ )                    (13)

Q×e( fP)+ I(f P)≤Q×e(fP)+ I(f p )                    (14)

If P<Q then I( f P)≥I( f Q ) and e ( f P)≤e(f Q ); it means 

that the surface f Q  is less bent than f P , or “smoother”. 

Form another point of view, if P becomes arbitrarily too 

large, and becomes near infinite, f P  must have been per-

fectly adjusted to the sample.

3.2 Considering the Weight r i , under the  

    supposing of fixed P weights

The simplest choice is to give the same weight r i=
1
n
 

(supposing r i=1) but because of irregularity of points and 

differences in local density of control points one deduces 

using of Voronoi polygon areas for introducing weights 

(Maillet, 2004; Goncalves et al., 2002). Thus as we discuss 

this method briefly, we would emphasize on the point, 

which this paper is based on.

Voronoi algorithm is a way to partition R 2 space. Those 

boundary condition of these sets are bisector lines between 

neighbor control points. R 2 Space has a dominion from +∞ 

till -∞ thus control points can never achieve the supremum 

or infimum of this space, therefore area of edge polygons 

must be separately computed (Fig.1).

Fig. 1 Voronoi polygons.

a) Normalized Voronoi with fixed P equal to one, μ i in 

    edge polygons are assumed to be zero.

In this method as you can see from its name, P is equal 

to one, r i  is a normalized area of Voronoi polygons and 

in edge polygons,

μ i={
r i=

A i

∑
n

j=1
A j

; if (i= 1,2,3,....,n＆A i≠∞)

0; if (Ai=∞)
   

                                 (15)
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from which A is Voronoi polygons area.

b) Normalized Voronoi with fixed P equal to one, μ i  in 

    edge polygons area assumed to be one.

Weighs obeys the undergone relations:

          

μ i= {
r i=

A i

∑
n

j=1

; if (i= 1,2,3,...,n＆A i≠∞)

1; if (Ai=∞)
 

1; if (A i=∞) 

(16)

c) Normalized Voronoi with fixed weight P=100.

 The surface constructed by normalized Voronoi, P=1 is 

a surface with softness more than contiguity of control 

points so based on what we said on the start of this section, 

P fixed brings itself forth. It is necessary to say P is a digit 

between 103 to 105. So, the four following equations analyse 

the versatility of P.

μ i=100 ×
Ai

∑
n

j=1
Ai

;i=1,2,3,...,n.                     (17)

d) Normalized Voronoi with fixed weight P=1000,

μ i=1000 ×
Ai

∑
n

j=1
Aj

;i=1,2,3,...,n,                 (18)

e) Normalized Voronoi with fixed weight p=10000,

μ i=10000 ×
Ai

∑
n

j=1
Aj
;i=1,2,3,...,n,               (19)

f) Normalized Voronoi with fixed weight P=100000,

μ i=100000 ×
Ai

∑
n

j=1
Aj

;i=1,2,3...,n,                (20)

g) Voronoi,

This method is the comparison between usual and nor-

malized methods,

μ i=Ai ;i=1,2,3,...,n.                                 (21)

h) Fixed weight equal to one,

μ i=1;i=1,2, 3,...,n                                   (22)

it means that P is the total number of control points, and ri 

are equal to one.

4. Eeperimental Results

The elevation data of a location with area of 910×804 m
2
 

includes 7,330 points. Selection of points by their prelimi-

nary acquisitions order and not to regularize them, for this 

purpose one needs a start point number and a count of points 

must be used. Secondarily, regularizing data and selection 

of a window of it based on construction of m×m network. 

For example first column of Table 1 which named by “Data 

Location” represents these two methods of point selections. 

The differing on the last row, represent the first method, se-

lecting points with point number 1 as start point and 1500 

points data selected from original dataset. Or first row of 

this table is a selection of the window on the first row and 

the first column of the 5×5 network of dataset.

For comparison of weight defining methods mentioned 

in section 3, 10 data with different dispersal was selected 

from original data. After applying of methods mentioned 

on this article on every set of data for finding precision of 

every set, check points with ratio of 2 to 1 for control points 

selected have been chosen. Standard deviation and average 

of residuals for every weight definition methods computed 

on check points which you can find results on Table 1 and 

2 also Fig. 4.

The notable point is the smoothness behavior of TPS in 

void areas is lake existence naught extrapolation in it (Fig. 

3) (Bazen et al., 2002).

As it was expected, methods using normalized Voronoi 

polygon areas with P weight equal to one, because of greater 

bending effect than L2 norm discussed in Eq. 2 part 1 in sec-

tion 3 in contiguity to control points relative to other meth-

ods showing a weakness and only in 16 point series that have 

a better answer. And it is because of lack of data and prob-

ably existence of unusual point in the set of data in compar-

ison of these two methods (a, b). In fact participating edge 

points (a) have been a better response than not using them 

at all. Therefore in other methods we use weights equal to 

one for edge polygons.
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 Fig. 2 Point-clouds.

Table 1 Standard deviation of dataset shown in Fig. 4.

Mathod
→ Norm. Norm.

GCP Voronoi Voronoi P=100 P=1000 P=10000 P=100000 Voronoi Weight=1

data Location no.
(l at 

edge ploy)
(0 at 

edge poly)

5*5section11 16 0.122 0.122 0.139 0.138 0.138 0.138 0.138 0.122

5*5section12 174 1.414 1.415 0.861 0.740 0.779 0.779 0.783 0.710

5*5section13 190 0.724 0.736 0.542 0.568 0.614 0.614 0.622 0.564

5*5section21 250 0.872 0.992 0.505 0.454 0.458 0.458 0.457 0.483

5*5section22 552 1.257 1.258 0.748 0.683 0.718 0.718 0.723 0.663

5*5section23 306 1.152 1.152 0.547 0.437 0.458 0.458 0.460 0.432

5*5section33 314 1.301 1.403 0.682 0.710 0.747 0.747 0.749 0.682

5*5section43 242 0.692 0.373 0.417 0.444 0.444 0.447 0.398

5*5section44 96 1.693 1.429 1.416 1.420 1.420 1.420 1.404

From Pnt. 1to1500 1000 1.401 0.867 0.536 0.507 0.507 0.510 0.504



Shon, Howoong․Oh, Seok-Hoon․Kim, Youngkyung

28 지구물리

Table 2 Average of dataset shown in Fig. 4.

Mathod
→ Norm. Norm.

GCP Voronoi Voronoi P=100 P=1000 P=10000 P=100000 Voronoi Weight=1

data Location no.
(l at 

edge ploy)
(0 at 

edge poly)

5*5section11 16 -0.032 -0.031 -0.045 -0.048 -0.049 -0.049 -0.049 -0.043

5*5section12 174 0.411 0.410 0.140 0.033 -0.034 -0.051 -0.051 -0.020

5*5section13 190 0.385 0.385 0.092 0.032 -0.009 -0.023 -0.025 0.001

5*5section21 250 0.123 0.124 0.056 0.040 0.040 0.041 0.041 0.035

5*5section22 552 0.140 0.142 0.088 0.042 0.021 0.008 0.006 0.016

5*5section23 306 -0.069 -0.068 0.003 0.005 0.017 0.019 0.019 0.012

5*5section33 314 0.177 0.239 -0.009 -0.054 -0.082 -0.093 -0.094 0.010

5*5section43 242 0.040 -0.022 -0.044 -0.068 -0.079 -0.080 -0.061

5*5section44 96 -0.390 0.112 0.133 0.139 0.143 0.143 0.117

From Pnt. 1to1500 1000 0.156 0.049 0.029 0.005 -0.010 -0.010 -0.013

Fig. 3 Thin plate spline(TPS) surface.

Voronoi methods with weights different from 1 are the 

best, but in Fig. 4 for the 242 point condition, ‘c' have a less 

standard deviation than ‘e', ‘f' and 'd' Therefore for every 

set of data the best P must be optimized (Fig. 4, methods 

f, e, d and c). That is in the contrary with ideal best fitting 

described in ending of section 3.1 which P is leading to 

infinite. Method ‘g' have a better answer compared with 

‘b' and 'a', but it is not so much worse than ‘c', ‘d', ‘e' and 

‘f', so normal methods in TPS haven't any significant 

preferences. Based on 10 series as not expected, if μ i con-

sidered fixed and equal to one (method h) there is no sig-

nificant difference between its result and the best results of 

Voronoi methods. 

On the other hands, Voronoi algorithm add a new kind 

of problems which the fixed weight of one doesn't. those 

problems are:

- The probability of existence of more than 3 control points 

  on one circle and creation of embedded polygons(n 

  points). Because of the existence of more than C 2
n
 equi-

  table perpendiculars, ambiguity in defining neighbor 

points come to existence.

- The problem of determination of these polygons created 

for these points is another problem of computer coding 

which is complex and time consuming

- Computing area of these irregular polygons is another 

problem.

Therefore revision necessities of indicated reasons for 

methods using Voronoi algorithm show their importance 

and make the writer to design another test for it. The algo-

rithm of Voronoi has purposed because of this reason: this 

method is sensate of the density of control points, then in 

continuations ; has researched this significance in specific 

conditions of TPS and defined an experiment  in this form 

that two adjusted areas of original data chosen, the first (I) 

has 454 points and second dataset (II) has 473 points. 

Control and check points have separated by 2:1 ratio till the 

created surface error by control points, to be determined by 
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Fig. 4 Standard deviation and average for 8 chosen series of data that, “a” is the Voronoi normalized areas method with 
fixed weight P equals to 1 (P=1) and μ in edge polygons equals to one, “c” is the Voronoi normalized areas method 
with fixed weight P equals to 100 (P=100), “d” is the Voronoi normalized areas method with fixed weight P equals to 
1000 (P=1000), “e” is the Voronoi normalized areas method with fixed weight P equals to 10000 (P=10000), “f” is the 
Voronoi normalized areas method with fixed weight P equals to 100000 (P=100000), “g” is the method of Voronoi areas 
and “h” is the fixed weight (= 1) method.

Table 3 standard deveation calculated for analyzing density effects.

Method Norm.

Voronoi
p=100 p=1000 p=10000 p=100000 Voronoi Weight=1

Data
Location

I+II 1.789 0.816 0.637 0.583 0.595 0.609 0.581

I+½II 1.308 0.685 0.623 0.634 0.634 0.635 0.614

I+¼II 2.638 1.004 0.648 0.648 0.622 0.638 0.620

I+⅛II 1.690 0.578 0.578 0.534 0.545 0.554 0.531

check points.

Density of control points in I, is 10.51 points per square 

kilometers and in data II is 10.37 points per km2. Errors were 

computed for combination of two series, and results have 

been mentioned in Tables 3 and 4.

In the next stage, whereas the data of zone I not touched, 

zone II decreased to half and became 236 points. Again con-

trol and check points are separated in 2:1 ratio and the den-

sity of control points in II are decreased to 5.7 points per 

km
2 
(i.e. less than half of II)results have been shown in row 

I+
1
/2 II of Tables 3 and 4.

In resumption while zone I still unchanged, dataset of 
1
/2 

II became half again and reached 119 points that is corre-

sponds 2.58 points per km
2
 density, in other word less than 

1
/4 zone II. The results are shown in row I+

1
/4II of Tables 

3 and 4.

Now for last time data of zone 
1
/4II becomes half and 

reaches 60 points and density of 1.32 points per km
2
 which 

is one eights of zone II data. Results have been displayed 

in I +
1
/8II row of Tables 3 and 4.
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Fig. 5 Sensitivity of TPS relative to control points density: a) I+II, b) I+1/2II, c) I+1/4II, d) I+1/8II. 

Table 4 Average calculated for analyzing density effects.

Method Norm.

Voronoi
p=100 p=1000 p=10000 p=100000 Voronoi Weight=1

Data
Location

I+II 0.342 0.046 0.021 0.017 0.010 0.003 0.011

I+½II 0.110 -0.014 -0.013 -0.001 -0.001 -0.001 -0.009

I+¼II 0.412 -0.084 -0.090 -0.090 -0.081 -0.077 -0.082

I+⅛II -0.045 -0.038 -0.038 -0.025 -0.017 -0.017 -0.026

In Fig. 5 a two dimensional diagram of the chain of den-

sity reduction described above have been illustrated, what 

was expected was because of the sensitivity of Voronoi 

methods compared with fixed weights methods, by re-

ducing the density in a part of data, fixed weight methods 

must have shown weakness in final results.

As you can see in Fig. 6 method ‘h' even when the density 

reaches one eights in a part of original data, produces a com-

parable precision with Voronoi methods and will not weak-

en and will not adhere the expected pattern. In Fig. 7 behav-

ior of every weight definition and will not adhere the ex-

pected pattern. In Fig. 7 behavior of every weight definition 

method except ‘b'(because of lack of importance) is 

illustrated. This figure prove that with reduction of density 

even Voronoi methods will not follow a single pattern 

(p=100 till 100000, Fig. 7) and neither of results is strictly 

ascendant function nor strictly descendent function of 

density. Therefore one deduces by wonder that TPS with 
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                                (a)                                    (b) 

    

                                (c)                                    (d) 

Fig. 6 Standard deviation and average for density analyzing dataset, “a” is the Voronoi normalized areas method with 
fixed weight P equals to 1 (P=1) and μ in edge polygons equals to zero, “b” is the Voronoi normalized areas method 
with fixed weight P equals to 1 (P=1) and μ in edge polygons equals to one, “c” is the Voronoi normalized areas method 
with fixed weight P equals to 100 (P=100), “d” is the Voronoi normalized areas method with fixed weight P equals to 
1000 (P=1000), “e” is the Voronoi normalized areas method with fixed weight P equals to 10000 (P=10000), “f” is the 
Voronoi normalized areas method with fixed weight P equals to 100000 (P=100000), "g" is the method of Voronoi areas 
and "h" is the fixed weight (equal to 1) method.

Fig. 7 Above 8 diagrams are for showing behavior of every weight defenition methods relative to density variation, “a” 
is the Voronoi normalized areas method with fixed weight P equals to 1 (P=1) and μ in edge polygons equals to zero, 
“c” is the Voronoi normalized areas method with fixed weight P equals to 100 (P=100), “d” is the Voronoi normalized 
areas method with fixed weight P equals to 1000 (P=1000), “e” is the Voronoi normalized areas method with fixed weight 
P equals to 10000 (P=10000), “f” is the Voronoi normalized areas method with fixed weight P equals to 100000 (P=100000), 
“g” is the method of Voronoi areas and “h” is the fixed weight (equal to 1) method.
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Fig. 7 Continued.

this solution is not sensitive to density of points.

What was discussed in this part illustrates that for this 

specific solution of thin plate Splines using of fixed weight 

is the best answer, need no complex calculations and make 

TPS as a unified method for miscellaneous datasets from 

which data density is not bothering.

5. Conclusions

TPS as a density independence method can be used for 

the construction of the surfaces in the new brand geomatics, 

because of its miscellaneous of data sources and differences 

in their densities, note that the weights are always of cocern 

of the surveyors and differences in their densities, note that 

the weights are always of concern of the surveyors. On the 

other hand using TPS, without using the Voronoi algo-

rithms, whereas it limits the number of control points and 

reduces the speed of operation, one can create a surface in 

contrary to other surface simulation methods such as 

BSplines all at once. Because of the density independence 

mathematical form of straight method, one can use it in 

CAD/CAM softwares.

It is certain that the independency of density must to be 

of specifications of the thin plate spline, therefore other re-

searches on other solutions of TPS (Frank, 1982). must be 

considered. Because at least one can prove that, in the dense 

and the bare zones can be used with comparable error 

results. By the end result of this article, we recommend the 

usage of the TPS method for mountainous-flat regions be-

cause variation of one zone doesn't affect other zones so 

much.
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