• Title/Summary/Keyword: Sparse Coding

Search Result 43, Processing Time 0.02 seconds

Dual Dictionary Learning for Cell Segmentation in Bright-field Microscopy Images (명시야 현미경 영상에서의 세포 분할을 위한 이중 사전 학습 기법)

  • Lee, Gyuhyun;Quan, Tran Minh;Jeong, Won-Ki
    • Journal of the Korea Computer Graphics Society
    • /
    • v.22 no.3
    • /
    • pp.21-29
    • /
    • 2016
  • Cell segmentation is an important but time-consuming and laborious task in biological image analysis. An automated, robust, and fast method is required to overcome such burdensome processes. These needs are, however, challenging due to various cell shapes, intensity, and incomplete boundaries. A precise cell segmentation will allow to making a pathological diagnosis of tissue samples. A vast body of literature exists on cell segmentation in microscopy images [1]. The majority of existing work is based on input images and predefined feature models only - for example, using a deformable model to extract edge boundaries in the image. Only a handful of recent methods employ data-driven approaches, such as supervised learning. In this paper, we propose a novel data-driven cell segmentation algorithm for bright-field microscopy images. The proposed method minimizes an energy formula defined by two dictionaries - one is for input images and the other is for their manual segmentation results - and a common sparse code, which aims to find the pixel-level classification by deploying the learned dictionaries on new images. In contrast to deformable models, we do not need to know a prior knowledge of objects. We also employed convolutional sparse coding and Alternating Direction of Multiplier Method (ADMM) for fast dictionary learning and energy minimization. Unlike an existing method [1], our method trains both dictionaries concurrently, and is implemented using the GPU device for faster performance.

Adaptive Hyperspectral Image Classification Method Based on Spectral Scale Optimization

  • Zhou, Bing;Bingxuan, Li;He, Xuan;Liu, Hexiong
    • Current Optics and Photonics
    • /
    • v.5 no.3
    • /
    • pp.270-277
    • /
    • 2021
  • The adaptive sparse representation (ASR) can effectively combine the structure information of a sample dictionary and the sparsity of coding coefficients. This algorithm can effectively consider the correlation between training samples and convert between sparse representation-based classifier (SRC) and collaborative representation classification (CRC) under different training samples. Unlike SRC and CRC which use fixed norm constraints, ASR can adaptively adjust the constraints based on the correlation between different training samples, seeking a balance between l1 and l2 norm, greatly strengthening the robustness and adaptability of the classification algorithm. The correlation coefficients (CC) can better identify the pixels with strong correlation. Therefore, this article proposes a hyperspectral image classification method called correlation coefficients and adaptive sparse representation (CCASR), based on ASR and CC. This method is divided into three steps. In the first step, we determine the pixel to be measured and calculate the CC value between the pixel to be tested and various training samples. Then we represent the pixel using ASR and calculate the reconstruction error corresponding to each category. Finally, the target pixels are classified according to the reconstruction error and the CC value. In this article, a new hyperspectral image classification method is proposed by fusing CC and ASR. The method in this paper is verified through two sets of experimental data. In the hyperspectral image (Indian Pines), the overall accuracy of CCASR has reached 0.9596. In the hyperspectral images taken by HIS-300, the classification results show that the classification accuracy of the proposed method achieves 0.9354, which is better than other commonly used methods.

Acoustic Signal Classifier Design using Dictionary Learning (딕셔너리 러닝을 이용한 음파 신호 분류기 설계)

  • Park, Sung Min;Sah, Sung Jin;Oh, Kwang Myung;Lee, Hui Sung
    • Journal of Auto-vehicle Safety Association
    • /
    • v.8 no.1
    • /
    • pp.19-25
    • /
    • 2016
  • As new car technology is developing, temporal interaction is needed in automotive. Rhythmic pattern is one of the practical examples of temporal interaction in vehicle. To recognize rhythmic pattern and its input medium, dictionary learning is applicable algorithm. In this paper, performance and memory requirement of the learning algorithm is tested and is sufficiently good for use this acoustic sound.

Improved Excitation Coding for 13 kbps Variable Rate QCELP Coder

  • Kang, Sangwon;Lee, Dong-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.3E
    • /
    • pp.3-6
    • /
    • 1997
  • This paper reports on the optimal design of the excitation codebook in the 13 kbps variable rate QCELP coder of Korean speech. We present two optimal excitation codebooks which consist of 128 and 556 samples, respectively. For the design and test of the improved codebook, a data base of Korean speech is used. A quasi-Newton optimization algorithm was developed to design the codebook. The optimized codebook which remains sparse, can produce an average gain of 0.84 and 0.45 dB in SNR and SEGSNR respectively. Informal listening tests confirm the improvement in speech quality.

  • PDF

An ANALYTICTRANSFORM KERNEL DERIVATION METHOD FOR VERSATILE VIDEO CODING (VVC) (VVC 비디오 코덱을 위한 변환 커널 유도 방법)

  • Shrestha, Sandeep;lee, Bumshik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2019.11a
    • /
    • pp.246-248
    • /
    • 2019
  • In the ongoing standardization of Versatile Video Coding (VVC), DCT-2, DST-7 and DCT-8 are accounted as the vital transform kernels. While storing all of those transform kernels, ROM memory storage is considered as the major problem. So, to deal with this scenario, a common sparse unified matrix concept is introduced in this paper. From the proposed matrix, any point transform kernels (DCT-2, DST-7, DCT-8, DST-4 and DCT-4) can be achieved after some mathematical computation. DCT-2, DST-7 and DCT-8 are the used major transform kernel in this paper.

  • PDF

Fast Binary Block Inverse Jacket Transform

  • Lee Moon-Ho;Zhang Xiao-Dong;Pokhrel Subash Shree;Choe Chang-Hui;Hwang Gi-Yean
    • Journal of electromagnetic engineering and science
    • /
    • v.6 no.4
    • /
    • pp.244-252
    • /
    • 2006
  • A block Jacket transform and. its block inverse Jacket transformn have recently been reported in the paper 'Fast block inverse Jacket transform'. But the multiplication of the block Jacket transform and the corresponding block inverse Jacket transform is not equal to the identity transform, which does not conform to the mathematical rule. In this paper, new binary block Jacket transforms and the corresponding binary block inverse Jacket transforms of orders $N=2^k,\;3^k\;and\;5^k$ for integer values k are proposed and the mathematical proofs are also presented. With the aid of the Kronecker product of the lower order Jacket matrix and the identity matrix, the fast algorithms for realizing these transforms are obtained. Due to the simple inverse, fast algorithm and prime based $P^k$ order of proposed binary block inverse Jacket transform, it can be applied in communications such as space time block code design, signal processing, LDPC coding and information theory. Application of circular permutation matrix(CPM) binary low density quasi block Jacket matrix is also introduced in this paper which is useful in coding theory.

A Tree Regularized Classifier-Exploiting Hierarchical Structure Information in Feature Vector for Human Action Recognition

  • Luo, Huiwu;Zhao, Fei;Chen, Shangfeng;Lu, Huanzhang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1614-1632
    • /
    • 2017
  • Bag of visual words is a popular model in human action recognition, but usually suffers from loss of spatial and temporal configuration information of local features, and large quantization error in its feature coding procedure. In this paper, to overcome the two deficiencies, we combine sparse coding with spatio-temporal pyramid for human action recognition, and regard this method as the baseline. More importantly, which is also the focus of this paper, we find that there is a hierarchical structure in feature vector constructed by the baseline method. To exploit the hierarchical structure information for better recognition accuracy, we propose a tree regularized classifier to convey the hierarchical structure information. The main contributions of this paper can be summarized as: first, we introduce a tree regularized classifier to encode the hierarchical structure information in feature vector for human action recognition. Second, we present an optimization algorithm to learn the parameters of the proposed classifier. Third, the performance of the proposed classifier is evaluated on YouTube, Hollywood2, and UCF50 datasets, the experimental results show that the proposed tree regularized classifier obtains better performance than SVM and other popular classifiers, and achieves promising results on the three datasets.

A Spatial Pyramid Matching LDA Model using Sparse Coding for Classification of Sports Scene Images (스포츠 이미지 분류를 위한 희소 부호화 기법을 이용한 공간 피라미드 매칭 LDA 모델)

  • Jeon, Jin;Kim, Munchurl
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2016.06a
    • /
    • pp.35-36
    • /
    • 2016
  • 본 논문에서는 기존 Bag-of-Visual words (BoW) 접근법에서 반영하지 못한 이미지의 공간 정보를 활용하기 위해서 Spatial Pyramid Matching (SPM) 기법을 Latent Dirichlet Allocation (LDA) 모델에 결합하여 이미지를 분류하는 모델을 제안한다. BoW 접근법은 이미지 패치를 시각적 단어로 변환하여 시각적 단어의 분포로 이미지를 표현하는 기법이며, 기존의 방식이 이미지 패치의 위치정보를 활용하지 못하는 점을 극복하기 위하여 SPM 기법을 도입하는 연구가 진행되어 왔다. 또한 이미지 패치를 정확하게 표현하기 위해서 벡터 양자화 대신 희소 부호화 기법을 이용하여 이미지 패치를 시각적 단어로 변환하였다. 제안하는 모델은 BoW 접근법을 기반으로 위치정보를 활용하는 SPM 을 LDA 모델에 적용하여 시각적 단어의 토픽을 추론함과 동시에 multi-class SVM 분류기를 이용하여 이미지를 분류한다. UIUC 스포츠 데이터를 이용하여 제안하는 모델의 분류 성능을 검증하였다.

  • PDF

희소 부호화 기법과 토픽 모델링을 통한 이미지 분류 모델

  • Jeon, Jin;Kim, Munchurl
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2015.07a
    • /
    • pp.49-50
    • /
    • 2015
  • 본 논문에서는 이미지를 시각적 단어로 표현하여 분석하는 기법인 bag-of-visual words (BoW) 모델을 기반으로 latent dirichlet allocation (LDA) 모델을 결합하여 시각적 단어의 구조를 파악하여 이미지를 분류할 수 있는 모델을 제안한다. 우선 이미지를 시각적 단어로 기존의 방법보다 정확하게 표현하기 위해서 희소 부호화(sparse coding) 기법을 적용한다. 기존의 BoW 모델은 하나의 이미지 패치를 하나의 단어로 표현하였지만, 희소 부호화 기법을 통해 하나의 이미지 패치를 여러 개의 단어로 표현할 수 있다. 제안하는 모델을 이용하여 이미지를 분류하기 위해서 분류 성능 측정에 많이 쓰이는 multi-class SVM 기법을 이용한다. UIUC 스포츠 데이터를 이용한 성능 측정을 통해 제안한 기법의 클래스 분류 성능을 검증하였다.

  • PDF

Reduced Complexity Signal Detection for OFDM Systems with Transmit Diversity

  • Kim, Jae-Kwon;Heath Jr. Robert W.;Powers Edward J.
    • Journal of Communications and Networks
    • /
    • v.9 no.1
    • /
    • pp.75-83
    • /
    • 2007
  • Orthogonal frequency division multiplexing (OFDM) systems with multiple transmit antennas can exploit space-time block coding on each subchannel for reliable data transmission. Spacetime coded OFDM systems, however, are very sensitive to time variant channels because the channels need to be static over multiple OFDM symbol periods. In this paper, we propose to mitigate the channel variations in the frequency domain using a linear filter in the frequency domain that exploits the sparse structure of the system matrix in the frequency domain. Our approach has reduced complexity compared with alternative approaches based on time domain block-linear filters. Simulation results demonstrate that our proposed frequency domain block-linear filter reduces computational complexity by more than a factor of ten at the cost of small performance degradation, compared with a time domain block-linear filter.