• Title/Summary/Keyword: Spark ignition engine vehicle

Search Result 37, Processing Time 0.026 seconds

A Study on Waveform Analysis of Oxygen Sensor, Injector and Secondary Waveform through Emission Characteristics by a Decrepit Vehicle (노후 차량의 배기가스 측정을 이용한 산소센서, 인젝터, 점화2차파형의 파형분석 연구)

  • Yoo, Jongsik;Kim, Chulsoo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.5
    • /
    • pp.151-156
    • /
    • 2013
  • The experiment was done on cars travelling at the speeds of 20km/h, 60km/h and 100km/h using the performance testing mode for chassis dynamometer. In this experiment, the relativity between the secondary waveform coming from ignition coil and exhaust emissions were measured in case of cars with failures, in oxygen sensor, spark plugs. The following results obtained by analysis of the relativity between the secondary waveform and exhaust emissions. 1) When the oxygen sensor is failure, the average value of CO emission measured was 6.8 times higher than the standard CO emission value and the average value of HC emission measured was 2.3 times higher than the standard emission level. 2) When engine parts are in failure, more fuel enters the cylinder due to longer opening duration of injector, and it tended to make CO and HC emission values increase. 3) Combustion duration, the shape of flame propagation during spark line, and the size of the discharge-induced energy were the three main elements that directly cause variations in CO and HC emission values.

An Effect of Car Performance Influenced to Absorbing Resistane of Air-cleaner Filter for the L. P. G Vehicle of Open Loop Fuel System (Open Loop 연료공급계의 L. P. G 차량에서 공기청정기 필터의 흡기저항이 차량성능에 미치는 영향)

  • Shin, Yong-Wha;Kim, Ki-Hyung;Jung, Jong-An
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.4
    • /
    • pp.36-46
    • /
    • 1995
  • The interest and purpose of this study is to control of air-fuel ratio and develop control device of a spark ignition LPG engine with adopting open loop fuel system. The air-fuel ratio is derived by considering airflow resistane of air cleaner element. The result shows that air-fuel ratio becomes more and more rich when airflow resistance increases. Experiments about the influence of airflow resistance on the engine performance, drivability and emissions are performed. Therefore, it is known that open-loop fuel system depends on the absorbing resistance of air-cleaner.

  • PDF

Experimental Study of Emission Characteristics for CNG Passenger Car (CNG 승용 자동차의 배출가스 특성에 관한 실험적 연구)

  • Kim, Hyun-jun;Lee, Ho-kil
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.6
    • /
    • pp.34-39
    • /
    • 2015
  • Recently, most of the energy consumed in vehicle is derived from fossil fuels. For this reason, the demand for clean, renewable and affordable alternative energy is forcing the automotive industry to look beyond the conventional fossil fuels. Natural gas represents today a promising alternative to conventional fuels for vehicles propulsion, because it is characterized by a relatively low cost, better geopolitical distribution than oil, lower environmental impact, higher octane number and a higher self ignition temperature. Above all, CNG is an environmentally clean alternative to the existing spark ignition engines with the advantages of minimum change. In this study was installed bi-fuel system that a conventional 2 liters gasoline engine was modified to run on natural gas by a gas injection system. Experiments were mainly carried on the optimization of an ECU control strategy affecting the emission characteristics of CNG/Gasoline bi-fule vehicle. The test results shown that CO2 emission in bi-fuel mode was reduced 16% compared to gasoline fuel in the NEDC mode. Also the amount of CO and HC emissions in bi-fuel and gasoline modes were found to equality. But Compared to gasoline, the bi-fuel mode resulted in higher NOx emissions.

Measurement of Inertia of Turbocharger Rotor in a Passenger Vehicle (승용차용 터보과급기 로터의 관성모멘트 측정)

  • Chung, Jin Eun;Lee, Sangwoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.1
    • /
    • pp.33-38
    • /
    • 2016
  • The turbocharger is an essential component to realize the engine down-sizing. The moment of inertia of turbocharger rotor is an important parameter with respect to acceleration performance of the vehicle. It can be calculated from the CAD software based the geometry data and the material properties. But the accurate value of the inertia of turbocharger rotor must be measured through the experimental method. In this study, the measurement of moment of inertia of turbocharger rotor for 2.0 L spark-ignition engine was carried out. First, an experimental equipment using a trifilar method was designed and fabricated. Some optical devices, that is, photo sensor, counter, convex lens, etc, were used to increase the accuracy of the measurement. Second, error sensitivity for the equipment was analyzed. The error of period time and the radius can give big affects to the accuracy of the moment of inertia. When the amount of error of these two were each 1.0 %, maximum error of the moment of inertia was under 3.0 %. Third, the calibration for the equipment was performed using a calibration rotor which has similar shape to turbine rotor but simple. Calculated value from CAD software and measured one for the calibration rotor were compared. The total error of the equipment and the measurement is about 1.3 %. This result shows that the equipment can give the good result with resonable accuracy. Finally the moment of inertia of the turbine rotor and compressor wheel were measured. The coefficient of variations, the ratio of standard deviation to mean value, were reasonably small at 0.57 % and 0.73 % respectively. Therefore this equipment is suitable for the measurement of the moment of inertia of the turbine rotor and compressor wheel.

Effect of Varying Excessive Air Ratios on Nitrogen Oxides and Fuel Consumption Rate during Warm-up in a 2-L Hydrogen Direct Injection Spark Ignition Engine (2 L급 수소 직접분사 전기점화 엔진의 워밍업 시 공기과잉률에 따른 질소산화물 배출 및 연료 소모율에 대한 실험적 분석)

  • Jun Ha;Yongrae Kim;Cheolwoong Park;Young Choi;Jeongwoo Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.52-58
    • /
    • 2023
  • With the increasing awareness of the importance of carbon neutrality in response to global climate change, the utilization of hydrogen as a carbon-free fuel source is also growing. Hydrogen is commonly used in fuel cells (FC), but it can also be utilized in internal combustion engines (ICE) that are based on combustion. Particularly, ICEs that already have established infrastructure for production and supply can greatly contribute to the expansion of hydrogen energy utilization when it becomes difficult to rely solely on fuel cells or expand their infrastructure. However, a disadvantage of utilizing hydrogen through combustion is the potential generation of nitrogen oxides (NOx), which are harmful emissions formed when nitrogen in the air reacts with oxygen at high temperatures. In particular, for the EURO-7 exhaust regulation, which includes cold start operation, efforts to reduce exhaust emissions during the warm-up process are required. Therefore, in this study, the characteristics of nitrogen oxides and fuel consumption were investigated during the warm-up process of cooling water from room temperature to 88℃ using a 2-liter direct injection spark ignition (SI) engine fueled with hydrogen. One advantage of hydrogen, compared to conventional fuels like gasoline, natural gas, and liquefied petroleum gas (LPG), is its wide flammable range, which allows for sparser control of the excessive air ratio. In this study, the excessive air ratio was varied as 1.6/1.8/2.0 during the warm-up process, and the results were analyzed. The experimental results show that as the excessive air ratio becomes sparser during warm-up, the emission of nitrogen oxides per unit time decreases, and the thermal efficiency relatively increases. However, as the time required to reach the final temperature becomes longer, the cumulative emissions and fuel consumption may worsen.

A Study on the Knocking Characteristics with Various Excess Air Ratio in a HCNG Engine (HCNG 엔진의 공기과잉율 변화에 따른 노킹 특성에 관한 연구)

  • Lim, Gihun;Park, Cheolwoong;Lee, Sungwon;Choi, Young;Kim, Changgi;Lee, Janghee
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.1
    • /
    • pp.7-12
    • /
    • 2013
  • As emission regulation for vehicle has been reinforced, many researches carried out for HCNG(hydrogen-natural gas blends) fuel to the conventional compressed natural gas (CNG) engine. However, abnormal combustion such as backfire, pre-ignition or knocking can be caused due to high combustion speed of hydrogen and it can result in over heating of engine or reduction of thermal efficiency and power output. In the present study, improvement of combustion performance was observed with HCNG fuel since it can extend a flammability limit. Knocking characteristics for CNG and HCNG fuel were investigated. Feasibility of HCNG fuel was evaluated by checking the knock margin according to excess air ratio. The operation of engine with HCNG was stable at minimum advance for best torque(MBT) spark timing and knock phenomena were not detected. However, it is necessary to prepare higher knock tendency since possibility of knock is higher with HCNG fuel.

Characteristics of Combustion by Varying Different Coolant-temperature in a Hydrogen Engine for HALE UAV (고고도 무인기용 수소연료엔진의 냉각수 온도변화에 따른 연소 특성)

  • Yi, Ui-Hyung;Jang, Hyeong-Jun;Park, Cheol-Woong;Kim, Yong-Rae;Choi, Young
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.2
    • /
    • pp.59-66
    • /
    • 2018
  • Using hydrogen fuel is expected to be suitable as a reciprocating internal combustion engine with heightened interest in HALE(High Altitude Long Endurance) UAV(Unmanned Aerial Vehicle). Hydrogen is hightest energy density per mass so it can continue to charge for long periods of time and have positive part of the environmental effects. However, it is estimated that there is less research on hydrogen fuel engine currently applied, and many studies need to be done. Depending on the operation, there are factors that result in supercooling due to reduced radiation or reduce cooling performance due to low air density. Therefore, the experiment was to change the temperature of the cooling water and investigate the effect on engine combustions. The limitation of the stable operation range due to backfire is dominated by the excess air ratio rather than the effect of the cooling water temperature change. When the cooling water temperature increases, the volumetric efficiency decreases and the torque decreases. As the cooling water temperature decreases, the heat loss was increased and consequently the thermal efficiency was decreased.