• Title/Summary/Keyword: Spark Ignition Engine

Search Result 358, Processing Time 0.094 seconds

An Effect of Car Performance Influenced to Absorbing Resistane of Air-cleaner Filter for the L. P. G Vehicle of Open Loop Fuel System (Open Loop 연료공급계의 L. P. G 차량에서 공기청정기 필터의 흡기저항이 차량성능에 미치는 영향)

  • Shin, Yong-Wha;Kim, Ki-Hyung;Jung, Jong-An
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.4
    • /
    • pp.36-46
    • /
    • 1995
  • The interest and purpose of this study is to control of air-fuel ratio and develop control device of a spark ignition LPG engine with adopting open loop fuel system. The air-fuel ratio is derived by considering airflow resistane of air cleaner element. The result shows that air-fuel ratio becomes more and more rich when airflow resistance increases. Experiments about the influence of airflow resistance on the engine performance, drivability and emissions are performed. Therefore, it is known that open-loop fuel system depends on the absorbing resistance of air-cleaner.

  • PDF

Effect of Enhanced Mixture Formation on the Combustion Characteristics in Gasoline Engine (가솔린 기관의 혼합기 형성 촉진이 연소 특성에 미치는 영향)

  • Lee, C.S.;Seo, Y.H.;Kim, M.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.5
    • /
    • pp.56-63
    • /
    • 1995
  • In this paper, the fuel atomization effect of a spark-ignition engine on the lean burn characteristics is studied. The fuel atomization is enhanced by heating the inside of the intake manifold with electric heater. Several operating parameters including cyclic variation are expressed against the air-fuel ratio from the experimental results. The fuel atomization gives much influence on the combustion stability. As the intake manifold is heated, the combustion duration decreased and the value of COV in the lean region as well as in the theoretical equivalence ratio became smaller than of not-heated.

  • PDF

A Study of Vaporization Characteristics in the Methanol Spark Ignition Engine (메탄올 스파크 점화기관의 기화특성에 관한 연구)

  • 한성빈;문성수;이성열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.1
    • /
    • pp.77-84
    • /
    • 1994
  • The oil crises in 1973 and 1978 stimulated the alternative fuel research activities in many countries around the world. Among the alternative fuels, methanol is one of the highest potential fuels for transportation. Methanol has been considered for use as automotive fuel, but it has a defect of the great latent vaporization heat. Therefore, authors have made the fuel vaporizing device in order to eliminate the fuel film flow heating the mixture. This paper presents a study on the characteristics of vaporization, engine performance, and emission which result from using the fuel vaporizing device.

A Study on the Flame Behavior of Substitute Fuel of Gasoline Engine (가솔린엔진용 대체연료의 화염거동에 관한 연구)

  • Yang, Jeong-Gyu;Ryu, Jeong-In
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.21 no.2
    • /
    • pp.157-166
    • /
    • 1985
  • The Purpose of this study are to investigate the characteristics of the flame behavior of gasoline-methanol blended fuels in spark ignition engine. Ionization probe were installed at the cylinder head and piston in order to measure flame speed. Other parameter such as engine performance, fuel consumption rate and exhaust gas were measured. The results were as follows. 1. In the case of increase methanol contents in blend fuel, flame propagation speed were increased, and thermal efficiency of the engine were increased due to decrease of energy consumption rate. 2. In the case of fixed equivalance ratio, NO sub(X) in exhaust gas were increased in accordance with increase of spark advance, and mean effective pressure were decreased in accordance with increase of methanol contents. 3. CO and HC concentration were decreased in accordance with increase of methanol contents.

  • PDF

Effect of Injection Pressure and Injection Timing on Combustion Characteristics of Spray-Guided Direct-Injection Spark-Ignition Engine under Lean Stratified Combustion Operation (성층희박연소 운전조건에서 분사압과 분사시기에 따른 분무유도식 직접분사 가솔린엔진의 연소특성)

  • Oh, Hee-Chang;Lee, Min-Seok;Park, Jung-Seo;Bae, Choong-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.10
    • /
    • pp.981-987
    • /
    • 2011
  • In this study, single cylinder engine experiment was carried out to investigate combustion characteristics spray guided direct injection spark ignition engine. In the result of engine experiment, it was shown that flammable window of injection timing was existed. The combustion efficiency increased with retarding injection timing, reaching a peak value, subsequent to decrease again. These results were likely due to the effect of ambient pressure on stratified-premixed mixture preparation. 150 bar injection pressure condition and retarded injection timing from the best combustion efficiency injection timing showed the highest IMEP value due to the advanced combustion phase of the maximum combustion efficiency condition. HC emission showed same trend of combustion efficiency, and smoke emission was increased as injection timing was retarded due to the increased locally rich area in the high ambient pressure. NOx emission showed decreasing trend as injection timing was retarded. This is likely due to the maximum in-cylinder temperature was decreased with retarded combustion phase.

An Experimental Study on Lean-burn Limit and Emission Characteristics of Air-fuel Ratio in a CNG Engine (수소-CNG 혼소기관의 공기과잉률 변화에 따른 희박가연한계 및 배출가스 특성에 관한 연구)

  • KIM, INGU;SON, JIHWAN;KIM, JOUNGHWA;KIM, JEONGSOO;Lee, Seong-Uk;KIM, SUNMOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.2
    • /
    • pp.174-180
    • /
    • 2017
  • Recently, the world faces the environmental problem such as air pollution due to harmful gas discharged from car and abnormal climate due to the green-house gases increased by the discharge of $CO_2$. Compressed Natural Gas (CNG), one of alternative for this problem, is less harmful, compared to the existing fossil fuel, as gaseous fuel, and less carbon in fuel ingredients and carbon dioxide generation rate relatively favorable more than the existing fuel. However, CNG fuel has the weakness of slow flame propagation speed and difficult fast burn. On the other hand, hydrogen does not include carbon in fuel ingredients, and does not discharge harmful gas such as CO and HC. Moreover, it has strength of quick burning velocity and ignition is possible with small ignition energy source and it's has wide Lean Flammability Limit. If using this hydrogen with CNG fuel, the characteristics of output and discharge gas is improved by the mixer's burning velocity improved, and, at the same time, is possible to have stable lean combustion with the reduction of $CO_2$ expected. Therefore, this research tries to identify the characteristics of engine and emission gas when mixing CNG fuel and hydrogen in each portion and burning them in spark igniting engine, and grasp the lean combustion limit and emission gas characteristics according and use it as the basic data of hydrogen-CNG premixed engine.

An Experimental Study on Performance and Emission Characteristics of Hydrogen Mixtures in a CNG Engine (CNG 기관의 수소혼합률 변화에 따른 성능 및 배출가스 특성에 관한 실험적 연구)

  • KIM, INGU;SON, JIHWAN;KIM, JOUNGHWA;KIM, SUNMOON;KIM, JEONGSOO;LEE, SEANGWOCK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.4
    • /
    • pp.357-364
    • /
    • 2016
  • Recently, the world faces the environmental problem such as air pollution due to harmful gas discharged from car and abnormal climate due to the green-house gases increased by the discharge of $CO_2$. Compressed Natural Gas (CNG), one of alternative for this problem, is less harmful, compared to the existing fossil fuel, as gaseous fuel, and less carbon in fuel ingredients and carbon dioxide generation rate relatively favorable more than the existing fuel. However, CNG fuel has the weakness of slow flame propagation speed and difficult fast burn. On the other hand, hydrogen does not include carbon in fuel ingredients, and does not discharge harmful gas such as CO and HC. Moreover, it has strength of quick burning velocity and ignition is possible with small ignition energy source and it's has wide Lean Flammability Limit. If using this hydrogen with CNG fuel, the characteristics of output and discharge gas is improved by the mixer's burning velocity improved, and, at the same time, is possible to have stable lean combustion with the reduction of $CO_2$ expected. Therefore, this research tries to identify the characteristics of engine and emission gas when mixing CNG fuel and hydrogen in each portion and burning them in spark igniting engine, and grasp the combustion stability and emission gas characteristics according and use it as the basic data of hydrogen-CNG premixed engine.

Cycle Resolved NO Emissions and Its Relation with Combustion Chamber Pressure in an S.I. Engine with Fast Response NO Analyzer

  • Sung, Jung-Min;Kim, Hyun-Woo;Lee, Kyung-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.10
    • /
    • pp.1563-1571
    • /
    • 2003
  • A fast response NO analyzer was applied to investigate the relation between cycle-by-cycle NO emissions and combustion chamber pressure. NO emissions were sampled at an isolated exhaust manifold of 4-stroke spark ignition engine to avoid the interference of exhaust gas from other cylinders. The linear correlation analysis was performed with collected data of NO emissions and combustion chamber pressure with respect to the various air-fuel mixture ratios and engine loads. The sampled data sets were obtained during 200 cycles at each operating condition. The results showed that there was a typical pattern in NO emissions from an exhaust port through a cycle. It was possible to set a block of crank angle in which the linear correlation coefficient between NO emissions and combustion chamber pressure was high. As the engine load increased, NO emissions were more dependent on combustion chamber pressure after TDC. It was also analyzed that the correlation between two parameters with respect to air-fuel mixture ratio tended to increase as mixture went leaner. Furthermore, this correlation coefficient for the mixture near the lean limit seemed to be kept high even though combustion was unstable.

Experimental Study of the Effect of Secondary Air Injection on the Cold Start Total Hydrocarbon Emissions in a Spark Ignition Engine (스파크 점화기관에서 이차 공기 분사가 냉시동시 THC 배출량에 미치는 영향에 관한 실험적 연구)

  • 이승재;함윤영;전광민
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.1-6
    • /
    • 2003
  • Engine emission regulations are becoming more stringent nowadays. In cold transient regime, about 80% THC is exhausted to the atmosphere in the first 200s (US FTP cycles). Accordingly, reducing emission levels in the cold period immediately after the engine start before the catalysts reach their working temperature will be an especially critical factor in meeting more stringent regulations in the future. In this study, the total hydrocarbon quantities are measured using a Fast FID with gasoline fuel for a 4-cylinde. Sl engine, including Secondary Air Injection (SAI) system. Commercial SAI device's direction is reverse to the exhaust flow. In this study, a swirl flow type SAI system which is positioned between the exhaust manifold and exhaust port, was developed. We compared the swirl type secondary air injection with a commercial secondary air injection of .everse flow. The swirl type SAI showed better results in reducing HC by 26% than the commercial flow type SAI of reverse flow which was caused by the better mixing between the exhaust gas and the secondary air.

A Study on Distillation Property of Automotive Gasoline and Diesel Fuel (자동차용 가솔린과 디젤 연료의 증류특성에 관한 연구)

  • Youm, Kwang-Wook;Kim, Sang-Jin
    • Journal of Power System Engineering
    • /
    • v.18 no.5
    • /
    • pp.11-15
    • /
    • 2014
  • Currently, there are active researches being conducted on a new combustion technology that can reduce emission quantity while enhancing vehicle performance as well as Improving fuel quality. In a gasoline engine that uses petroleum, high volatility makes it easy to jump spark ignition and prevent knocking phenomenon that occurs inside an engine. In a diesel engine that uses diesel fuel, high volatility reduces combustion residues and toxic gas and is therefore good for protecting the environment. Therefore, for fuel used in a vehicle, volatility is an important factor that influences not only engine performance but also environmental protection. This research conducted a distillation experiment using gasoline and diesel fuel for vehicles produced by domestic oil companies. The test was conducted in accordance with the method of distillation experiment described in KS M ISO3405. In addition, it used the result of analysis from the experiment to examine visual distillation characteristics of each fuel and developed a formula based on distillation temperature.