• 제목/요약/키워드: Spanning subgraphs, infinite graphs

검색결과 2건 처리시간 0.014초

EXISTENCE OF SPANNING 4-SUBGRAPHS OF AN INFINITE STRONG TRIANGULATION

  • Jung, Hwan-Ok
    • Journal of applied mathematics & informatics
    • /
    • 제26권5_6호
    • /
    • pp.851-860
    • /
    • 2008
  • A countable locally finite triangulation is a strong triangulation if a representation of the graph contains no vertex- or edge-accumulation points. In this paper we exhibit the structure of an infinite strong triangulation and prove the existence of connected spanning subgraph with maximum degree 4 in such a graph

  • PDF

[2,3]-FACTORS IN A 3-CONNECTED INFINITE PLANAR GRAPH

  • Jung, Hwan-Ok
    • Journal of applied mathematics & informatics
    • /
    • 제10권1_2호
    • /
    • pp.27-40
    • /
    • 2002
  • For two integers m, n with m $\leq$ n, an [m,n]-factor F in a graph G is a spanning subgraph of G with m $\leq$ d$\_$F/(v) $\leq$ n for all v ∈ V(F). In 1996, H. Enomoto et al. proved that every 3-connected Planar graph G with d$\_$G/(v) $\geq$ 4 for all v ∈ V(G) contains a [2,3]-factor. In this paper. we extend their result to all 3-connected locally finite infinite planar graphs containing no unbounded faces.