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EXISTENCE OF SPANNING 4-SUBGRAPHS
OF AN INFINITE STRONG TRIANGULATION

HwaN-OK Jung

ABSTRACT. A countable locally finite triangulation is a strong triangulation if a
representation of the graph contains no vertex- or edge-accumulation points. In
this paper we exhibit the structure of an infinite strong triangulation and prove
the existence of connected spanning subgraph with maximum degree 4 in such a
graph
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1. Introduction

All graphs considered here are supposed to be simple and undirected. For
terminology not defined here the reader is referred to [2]. Let H be a subgraph
of a graph. For a vertex v of H, the neighborhood of v respective to H, denoted
by Nu(v),is {u € V(H)|uv € E(H)}. The degree dr(v) of a vertex v respective
to H is the number of Ny (v). H is a k-subgraph if dg(v) < k for all v € V(H).
A w,v-path in a graph G is a path connecting vertices u and v of G, and in this
case v and v are the endvertices of the path. A k-walk in a graph is a walk that
visits every vertex at least once and at most k times. Clearly a 1-walk is just a
hamiltonian cycle. N

Let G be a connected plane graph. Given a cycle C in G, let C denote the
subgraph of G consisted of only the vertices and edges of C but also those lying
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in the interior of C. A cycle C is a k-cycle if C' contains exactly k vertices. C
is called a facial cycle if it is a boundary of a face of G, i.e., C = C. The outer
cycle of a finite 2-connected plane graph G is the boundary of the unbounded
face of G, i.e., C=0C. A planar graph G is a circuit graph (due to D. Barnette
[1]) if it is isomorphic to C, where C'is a cycle in a 3-connected plane graph.
A 2-connected plane graph G is triangular, if every inner facial cycle of G is a
3-cycle. Obviously every triangular graph is a circuit graph.

A wertex-accumulation point (= VAP) of an infinite plane graph G, embedded
in R?, is a point P of R? such that the set {Q € R? | |Q — P| < €} contains
infinitely many vertices, for all real numbers ¢ > 0. If an embedding of G
contains no vertex-accumulation points, it is called a VAP-free graph. An edge-
accumulation point free (=EAP-free) graph can also be similarly defined. A
triangulation is a countable locally finite plane graph, each of which edges is
contained in two non-separating triangles. If the graph is VAP- and EAP-free,
then it is called a strong triangulation (following C. Thomassen [7]).

The search for connected spanning subgraphs of low degree in graphs is a
natural generalization of the search for hamiltonian paths or spanning subtrees
(see [6] or [10], and compare [4]). It is well known that every finite triangulation
of the sphere with no separating 3-cycles is hamiltonian [9]. On the other hand,
a classical result of Barnette [1] says that every 3-connected planar graph has
a spanning tree with maximum degree at most 3. The notion of the k-walk in
a family of walks or paths was introduced as a generalization of various results
on the path problems in graphs. It is not difficult to see that the existence of a
k-walk in a graph implies the existence of a spanning tree with maximum degree
k 4+ 1. Gao & Richter [3] proved that every 3-connected planar graph has a
2-walk, and subsequently Thomassen [8] showed that every finite triangulation
of an orientable surface of genus g with no noncontractible cycle of length 239+4
contains a spanning tree of maximum degree 4. As a corollary Gao & Richter
gave an interesting result about the existence of a spanning subgraph; namely
they showed that every circuit graph with outer cycle C contains a connected
spanning 4-subgraph H with C C H and dg(u) = du(v) = 2 for distinct
u,v e V(C).

The aim of this paper is to exhibit of the structure of an infinite strong
triangulation and to prove the existence of connected spanning 4-subgraphs in
such a graph, which is a slight extension of the theorem of Gao & Richter [3] to
infinite graphs. Namely we show the following theorem as a main result.

Theorem. Ewvery infinite strong triangulation G contains a connected spanning
subgraph with dg(v) < 4 for allv € V(G).

It may be mentioned that Gao & Richter [3] showed that in finite case their
result implies the theorem of Barnette [1]. The author also attempts to obtain



Existence of spanning 4-subgraphs of an infinite strong triangulation 853

a similar result from the main theorem in this paper; i.e., using our result, can
we prove the existence of spanning 3-tree in infinite strong triangulation? But
our attempt unfortunately was unsuccessful.

2. Preliminaries

Let G be a finite connected plane graph. Clearly there exist subgraphs
Q07Q17~~~ ,Qm OfGWith

m k—1
G=JQr and [U Q,»] NQ={a} k=1...,m
k=0

1=0

such that Q; (k= 1,...,m) is either 2-connected or isomorphic to K. In the
decomposition, the subgraphs @y is called blocks and the vertices 2, articulations
of G. 1In particular, the block is trivial if Q% is isomorphic to Ka, and it is
nontrivial otherwise. If a block contains at most one articulation, it is called
an endblock of G. G has a linear decomposition (or G is linear) if it contains at
most 2 endblocks in its decomposition. For a block @, we may denote 0Q the
outer cycle of Q if @} is nontrivial; but if Q) is trivial, we define 9Q = Q.

Gao & Richter [3] proved the following lemma.

Lemma 2.1. Let G be a circuit graph with outer cycle C and let u,v € V(C).
Then there exists a partition Vi, ..., Vi, of V(G)\V(C) and there exist vertices
Viy.-o s Um € V(C)\ {u, v} such that:
(1) the subgraph H; induced by V; U {v;} is a connected graph with linear
decomposition, and
(2) v is contained in an endblock Q; of H; with v; € V(Q:) \ {2}, where z;
is the articulation of Q,, for alli € {1,...,m}.

We are now ready to state a modification form of Lemma 2.1 concerning
triangular graphs, which is the essential tool in Section 3. But, since it can be
shown by similar arguments in the proof of the lemma (see {3]), we omit to prove
it in this paper.

Theorem 2.2. Let G be o 3-connected triangular graph with outer cycle C, and
let u,v,w € V(C) be distinct vertices. Then there exists a spanning subgraph G
of G —w such that:

(1) Ewvery nontrivial component of gj} has o linear decomposition,
(2) uw and v lie on a component of G in common, and each of the remaining
components contains ezactly one of V(C)\ {u, v, w}.
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In succession, we investigate the structure of an infinite strong triangulation.
First, let us recall some concept from [5]. Let C and C’ be two disjoint cycles in
an infinite strong triangulation G, where C lies in the interior of C'. A (C, C")-
ring is a subgraph of G, which consists of not only C and C’ but also the vertices
and edges lying between C and C’. For a (C,C")-ring R, a (C, C")-bridge (or
simply bridge) of R is either an edge of R joining C and C’ (such a bridge is
called trivial), or it is a connected component of R — (C U C") together with
all edges of R joining this component to C U C’. A (C,C")-ring R is tight if it
satisfies the following properties:

[T1] C and C’ are induced cycles.

[T2] |[V(B)NV(C’)| <2, for every bridge B of R.

(T3] EV(B)NV(C") = {z,2'}, 2 # 2/, for a bridge B, it must hold 22’ € E(G).

Lemma 2.3. Let C be an induced cycle of an infinite strong triangulation G.
Then there exists a cycle C' such that the (C,C")-ring is tight.

Proof. First, we construct a cycle C' in G satisfying the hypothesis of this
Lemma. Let F := {J|J is a facial cycle in G such that V(J) N V(C) # 0} and
let E be the set of all vertices of the cycles in F. Then we can see that |E| < oo,
since F contains only finite cycles and F' is also finite. Furthermore, set H :=
G[E}, i.e. H is the induced subgraph of G containing all elements of E, and let
C’ be its outer cycle of H. We will now show the (C,C’)-ring R is tight.

As an induced subgraph H of G, C' is an induced cycle. The assertion [T3] is
also obvious from the assumption. To show that C and C’ are disjoint, suppose
to contrary that there exists a vertex z with z € V(C) N V(C’). Let y be a
vertex on C’ adjacent to z. Then, from the fact that all facial cycles in G are
triangles, we can find a facial cycle J = {z,y, 2} such that yz ¢ E(C’). But
since the cycle must be contained in F' (since V(J) N V(C) # 0), it follows that
y,2 € E. Hence we have yz € E(H), which contradicts our construction of C’.

It remains to be shown that [V(B) N V(C’)| < 2 for every bridge B of R.
Suppose there exists a bridge B such that V(B)NV(C") = {y1,---, ¥y}, > 3.
Since B is not a chord and V(B)\V(C U C") # 0, it follows that there exists a
Y1, Yr-path P in B— (CU{yz, -+ ,yr—1}). Thus the facial cycle in R containing
the edge yxyk+1 (k=1,---,7— 1) is not contained in F', and therefore it holds
that yx ¢ E, k= 2,---,7 — 1, which also contradicts our construction of C’. O

Lemma 2.4. For any cycle C of an infinite strong triangulation, the subgraph
C is o triangular graph.

Proof. Since every strong triangulation VAP-free, it follows that C is a finite
subgraph, and hence it is triangular. O
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Now we prove the main result of this section.

Proposition 2.5. Let G be a strong triangulation and let Co be a facial cycle
of G. Then there exists a sequence of induced cycles {Co,C1,C2,- -, } which
holds the following properties:

(1) The (C,,CJ_H) ring is tight for all j € N.

(2) V(@ (Uc)

Proof. Tt is clear that Co is an induced cycle of G. For j € N the existence of Cj,
related to C;_1, satisfying the condition (1) follows from Lemma 2.3. It remains
only to show that the resulting cycles {Cp, C1, Ca, - - - } hold the condition (2).
Let £ € V(G) be an arbitrary vertex. Since C; lies in the interior of Cj44
(4 € N), it follows that = € V(é‘nm), where n, is a metric distance between z

and Cp. Because of V ) C V( U C; ) we have V(G) C V( G 5’1) Since

j=

it holds clearly that V(G ( D J) we can conclude V(G) = V( U C; )
3=0

a

Let C be an induced cycle in an infinite strong triangulation G. According to
Lemma, 2.3 we can construct a cycle C’ in G such that (C,C')-ring R is tight.
We denote F' be the set of all trivial bridges of R and let H := (CUC')UF.
Then we have exactly |F| facial cycles in G, up to the interior of C' and the
exterior of C'. For a facial cycle J of G the induced subgraph J of G is called a
cell of R. If J = J, then the cell J is empty. Clearly, in the interior of a cell lies
at most one bridge of R since G is maximal planar.

Now let L be an empty or nonempty cell of R. Because of the conditions (2)
and (3) in definition of tightness, L must be one of following two types:

() V()N V() =1,
(i) |[V(L)ynV(C)| =2.

In the former case we say that L is of type 1 and in the latter case L is of

type 2.

3. 4-subgraphs in circuit and triangular graphs

We begin with the lemma presented by Gao & Richter [3], which is essential
tool for the proofs of the successional results.

Lemma 3.1. Let G be a circuit graph with outer cycle C and let u,v € V(C)
with u # v. Then there exists a connected spanning 3-subgraph H of G such
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that:

(1) H contains all edges of C,
(2) du(u) =dy(v) =2.

Proof. See [3] O

Proposition 3.2. Let G be o connected plane graph with linear decomposition,
whose blocks are circuit graphs. Let Q and Q' (Q # Q') be the endblocks of G
with the articulations z and 2', respectively. Then, for arbitrary given vertices
v e V(0Q)\ {2z} and v' € V(0Q') \ {#'}, there exists a spanning {-subgraph H
of G such that:

(1) E(0Q) C E(H) for each block Q of G,
(2) dH(’U) = dH(UI) =2.

Proof. By assumption, G contains at least 2 blocks; let

Q:Q13Q2)"-5QH=QI

be the blocks of G with with the articulations z; € Q;—1NQ; ( =2,...,n), and

set 2o = v and 2,41 = v'. By Lemma 3.1, for each j € {1,...,n}, there exists

a spanning 4-subgraph Hj; of Q; with E(0Q;) € E(H;) and dg,(z;) < 2 and

du,;(2j+1) < 2. Note here that, if Q; is a trivial block, du;(2;) = du;(2j41) = 1.
n

Then H = U H; is a spanning 4-subgraph of G satisfying the assertions in the
j=1
proposition. O
Combining Proposition 3.2 with Theorem 2.2, we can obtain the following 2
results, which play a prominent role in the proof of our main theorem.

Theorem 3.3. Let G be a 3-connected triangular graph with outer cycle C.
Further let u,v,w € V(C) be pairwise distinct. Then there ezists spanning 4-
subgraph H of G —w with |V(C)| — 2 components such that:

(1) u and v lie on a component of H in common, and each of the remaining

components contains ezactly one of V(C)\ {u,v,w},
(2) du(u) =dg(v) =1 and du(z) < 2 for all z € V(C) \ {u,v, w}.

Proof. Let G be the spanning subgraph of G — w obtained from Theorem 2.2
which satisfies the conditions (1) and (2) in the theorem. Since every triangular
graph is a circuit graph, for each component of é, we use Proposition 3.2 to
obtain a spanning 4-subgraph H' of G (or G). Now consider the degree of u and
v. First note that dy(u) < 1 and dg(v) < 1, since v and v are contained in a



Existence of spanning 4-subgraphs of an infinite strong triangulation 857

component (say K) of H'. If dy(u) = du(v) = 1, we set H := H'. On the other
hand, if dg(u) = 2, we delete one of the two edges of H' incident to u as follows:
(The case dgy(v) = 2 can be similarly examined.)

First note that in this case u is contained in a nontrivial endblock (say @) of
K. Let x and y be the vertices of ¢ adjacent to u; in particular assume without
loss of generality that x is not an articulation of K. Since @) is triangular, z and
y must be adjacent in @, which follows that K — uy has a linear decomposition
with trivial endblock uz. 0

Corollary 3.4. Let G and C as in Theorem 3.3 be given, and let v,w € V(C)
be distinct vertices. Then there exists spanning 4-subgraph of G — {v,w} with
|[V(C)| — 2 components such that:

(1) Each component of H contains exactly one vertez of V(C)\ {v, w},
(2) du(z) <2 for allz € V(C)\ {v,w}.

Proof. If we denote H' the spanning 4-subgraph of G—w obtained from Theorem
3.3, then H = H' — v clearly is a spanning 4-subgraph of G — {v, w} as desired.
0

4. Proof of the main theorem

Let G be an infinite strong triangulation and let C be an arbitrary induced
cycle in G. Then, by Lemma 2.3, there exists a cycle C’ in G such that the
(C,C")-ring, say R, is tight. We first choose a cell Ly of type 1 or 2 with
[V(Lo) N V(C)| > 2. Note that, since |V(C)| > 3, such a cell must exist.

Now we construct a subgraph Hp of each cell L of R covering most vertices
(except for one or two vertices) of L, which satisfies certain degree conditions
for the vertices of the outer cycle and the remaining vertices of L.

{a) The cell Lo
Case 1: Ly is of type 1: Set

V(Lo) NV(C) = {z1,...,2:},r =2, and V(L) NV(C") = {z}.

By Theorem 3.3 we have a spanning 4-subgraph Hp, of Ly — z, with r — 1
components such that:

(1) z and z,—; are contained in a component of Hy, in common, and each
of the remaining components contains exactly one of {z1,...,z,—-2},
(2) du,,(2) =1, dg,, (Tr-1) = land dg, () <2foralli=1,...,7 - 2.

Case 2: Lg is of type 2: Set

V(L) NV(C) ={z1,.-.,2r},7 > 1, and V(L) NV(C') ={z,7'}.
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Note that, from selection of Ly, |V(Lg) NV(C)| = 2; i.e., 7 > 2. By Theorem
3.3 we can find a spanning 4-subgraph Hy, of Ly — z, with r — 1 components
such that:

(1) z and z,_; are contained in a component of Hr, in common, and each

of the remaining components contains exactly one of {z1,...,2r-2,2'},
(2) du,, (2) = 1, dg,, (zr—1) = 1, dpp, () < 2 and dp, (z:) < 2 for all
t=1,...,7r—2.

(b) L(# Lo) is a cell of R

Case 1: L is of type 1:
Let z1,...,z, and 2 as Case 1 in (a) be given. By Corollary 3.4 there exists
a spanning 4-subgraph Hy of L — {z,, 2} with r — 1 components such that:

(1) Each component of Hy, contains exactly one of {z1,...,zr_1},
(2) du,(z;) <2foralli=1,...,7r—1.

Case 2: L is of type 2:
Let z1,...,%, and 2,2’ as Case 2 in (a) be given. By Theorem 3.3 we can
obtain a spanning 4-subgraph Hy, of L — z, with r components such that:

(1) z and 2’ are contained in a component of Hy, in common, and each of

the remaining components contains exactly one of {z1,...,%r-1},
(2) du,(2) =dg,(¢') =1and dg,(z;) < 2foralli=1,...,r~1

We are now in position to construct a connected spanning 4-subgraph of o
from a given 4-subgraph of C. To do this, assume that, for the cycle C in G, a
connected spanning 4-subgraph of C with dg(z) < 2 for all z € V(C) is already
constructed. As a ‘connection cell’ between C and C’, we select a cell Ly of the
(C, C")-ring R with |V(Lg) NV(C)| > 2 as above.

We first set Hp,, the spanning 4-subgraph of Lo — z, satisfying the conditions
in Case (a), and then we denote Hy, the spanning 4-subgraph of L —z, satisfying
the conditions in Case (b) for each remaining cells L of R. In order to make a
success of the degree condition for the constructed subgraph, we have to delete
an edge from the graph. To do this, let us denote L a cell of type 2 of R with
L # Lo which contains the vertex z, where z is the vertex of V/(Lg) NV (C")
defined in Case (a). Notice that the number of such cells is one (in the case that
Lyg is of type 2) or two (in the case Lo is of type 1). Finally, by denoting Z the
vertex of H; adjacent to z, we set

H’:HU[ U HL} — {23}

Lisacell of R

Then we can show that the constructed graph H’ is a spanning 4-subgraph of
C’ with dg/(z) < 2 for all z € V(C”). To see this, consider the degree of a vertex
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on C. By construction we can verify that every vertex on C has degree at most
2. Since dy(z) < 2 by assumption, we can conclude dg(z) < 242 = 4 for all
z € V(C). Next, consider the vertices on C’. Since every vertex of C’ in each
cell of type 2 containing this vertex has the degree 1 and since such vertex is
contained exactly 2 cells of type 2, it follows that dg(z) = 2 for all z € V(C").
It is not hard to verify the remaining assertions.

We are now prepared to prove the main theorem. Let G be an infinite strong
triangulation and let Cy be a facial cycle of G. By Proposition 2.5, we get a
sequence of induced cycles {Cp, C1,Cy,-- -, } such that the (Cj, Cj41)-ring is

o0
tight for all j € N and V/(G) = V( U Cy).
=0

Obviously Hy := Cpisa spanning 4-subgraph of 6‘0. Now assume that, for j >
1, a spanning 4-subgraph H; of C; with dy,(x) < 2 for all x € V/(H;) is already
constructed. Then, by the claim above and the fact that the (Cj;, Cj4;)-ring is

tight, we can obtain a spanning 4-subgraph Hj,1 of @H with the corresponding
properties. Therefore we have a sequence of 4-subgraphs { Ho, Hy, Hs, -+, }in G
oQ

with H; C H;41 and V(H;) = V(C;) for all j € N. By setting H = V( U Hj),
Jj=0

we obtain a spanning 4-subgraph of G, and thus our proof is complete.
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