• Title/Summary/Keyword: Spacing Ratio

Search Result 540, Processing Time 0.026 seconds

Influence of Joint Spacing to Rock Slope Stability (절리 간격이 암반 사면의 안정성에 미치는 영향)

  • 윤운상;권혁신;김정환
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.511-518
    • /
    • 2000
  • Characteristics of joint orientation, length, spacing and their distribution are very important factors for slope stability, Especially, the effect of joint spacing is an essential factor of slope stability. This study is to analyze the effect of joint spacing in cases of sliding and toppling, which is a typical failure mode. Joint spacing can divided into vertical spacing(spacing) and horizontal spacing(gap). And then, the spacing/length ratio of joint directly affect rock slope failure. When the ratio is below 0.05, the possibility of failure is rapidly increased. In case of toppling, the possibility of failure depends on the ratio of spacing to height of slope ratio slope. As the ratio decreases, the possibility of toppling failure increased. The critical ratio of spacing to height of slope is determined by the dip angle of the slope and the orientation of joint sets.

  • PDF

Variation of State Boundary Surface of Remolded Weathered Mudstone soil by spacing ratio (공간비에 의한 재성형 이암 풍화토의 상태경계면 변화)

  • Kim, Ki-Young;Jeon, Je-Sung;Lee, Jong-Wook;Kim, Je-Hong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1095-1099
    • /
    • 2008
  • Critical state theory involves two state boundary surface. One is Roscoe surface and the other is Hvorslev surface. The shape of these boundary surface was changed because of several parameters : Critical state constant(M), spacing ratio (r) and critical state pore pressure coefficient($\wedge$). As these constants make difference to each model and the way of solution, they may affect the shape of state boundary surface. Specially, spacing ratio (r) is important. On this study, triaxial compression test was performed using remolded weathered mudstone soil and investigated variation of state boundary surface because of spacing ratio. In the results of prediction, critical state point was located highly and the shape of boundary surface was changed more tightly curve as decreasing spacing ratio.

  • PDF

Combustion Characteristics of Coal Particle Array (미분탄 입자들의 배열에 따른 연소특성)

  • Cho, Chong-Pyo;Kim, Ho-Young;Chung, Jin-Taek
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.117-123
    • /
    • 2004
  • The burning characteristics of interacting coal particles in a convective flow are numerically investigated at various Reynolds numbers. The transient combustion of 2-dimensionally arranged particles, both the fixed particle distances of 5 radii to 20 radii horizontally and 3 radii to 24 radii vertically, is studied. The results obtained from the present numerical analysis reveal that the transient flame configuration and retardation of particle temperature augmentation with the horizontal or vertical particle spacing substantially influence devolatilization process and carbon conversion ratio of interacting particles. Volatile release and carbon conversion ratio of the second particle with decreasing horizontal and vertical particle spacing decrease gradually, whereas those of the first particle with decreasing vertical particle spacing increases due to flow acceleration. When the vertical particle spacing is smaller than $6R_{o}$, volatile release and carbon conversion ratio of the second particle decrease greatly due to reduction of flame penetration depth.

  • PDF

A Theoretical Study on Arching Effect of Embankment Pile Grid (격자배치 성토지지말뚝의 아칭효과에 대한 이론적 연구)

  • Lee, Seung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.302-309
    • /
    • 2017
  • The influence of the pile diameter, center to center pile spacing, internal friction angle of embankment soil, and height of embankment on the arching efficacy of the embankment pile was investigated. The arching efficacy, which was derived by the arch model developed in the embankment soil was calculated using two methods, one that considers crown failure of the arch and the other that considers load on the pile cap and critical relative spacing ratio for which the arching efficacy calculated by the two methods are the same. According to the computed results in this study, the arching efficacy calculated from a consideration of the load on pile cap governs when the relative spacing ratio becomes smaller and that calculated from the theory of crown failure governs when the relative spacing ratio becomes larger. The critical relative spacing ratio below which the arching efficacy calculated from a consideration of the load on pile cap governs the design decreases with increasing value, which is defined by the ratio of the pile diameter to the pile center to center spacing. Critical relative spacing ratios, which correspond to the values of 0.5 and 0.2 were 0.35 and 0.85, respectively. Considering the computed results, the critical relative spacing ratio decreases with increasing Rankine passive earth pressure coefficient and critical relative spacing ratios, which correspond to values of 5 and 2, were 0.23 and 0.85, respectively. The arching efficacy, which corresponds to the area ratio of 9%, was 54% and the one that corresponds to the value of 3 was 61%; the critical relative spacing ratios, which correspond to those arching efficacies, were greater than 0.5.

Effects of Coal Particle Array on Coal Combustion (미분탄 입자들의 배열이 미분탄 연소에 미치는 영향)

  • Cho, Chong-Pyo;Kim, Ho-Young;Chung, Jin-Taek
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.12 s.243
    • /
    • pp.1321-1328
    • /
    • 2005
  • The burning characteristics of interacting coal particles in a convective flow are numerically investigated at various Reynolds numbers. The transient combustion of 2-dimensionally arranged particles, both the fixed particle distances of 5 radii to 20 radii horizontally and 4 radii to 24 radii vertically, is studied. The results obtained from the present numerical analysis indicate that the transient flame configuration and retardation of particle temperature augmentation with the horizontal or vertical particle spacing substantially influence devolatilization process and carbon conversion ratio of interacting particles. Volatile release and carbon conversion ratio of the second particle with decreasing horizontal and vertical particle spacing decrease gradually, whereas those of the first particle with decreasing vertical particle spacing increase due to flow acceleration. When the vertical particle spacing is smaller than $6R_0$, volatile release and carbon conversion ratio of the second particle decrease due to reduction of flame penetration depth and interference of oxygen diffusion by the first particle.

Evaluation of Pile Spacing Ratio of Stabilizing Piles for Ground Destruction Reduction at the Time of Soft Ground Excavation (연약지반 굴착시 지반파괴 저감을 위한 억지말뚝의 간격비 평가)

  • Kim, Jae-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.7
    • /
    • pp.47-56
    • /
    • 2016
  • In the case of excavating ground backfilled with soft ground, ground destruction occurs owing to the discharge of groundwater from excavated back ground in spite of earth retaining wall. To minimize this, indoor model test was implemented applying stabilizing pile as a solution for ground destruction. The unreinforced case was compared with the reinforced case and the comparison demonstrated that the ratio of the gap in settlement of the two cases is about three to one, which proves the reinforcement effect (Kim, 2014). This study has carried out the evaluation of appropriate pile spacing ratio, according to the confirmed effect of stabilizing pile. In the evaluation test the case with pile spacing ratio of 0.66 (5 stabilizing piles) was compared with that of 0.76 (3 stabilizing piles), and it has been shown that applying stabilizing pile has effect on ground destruction reduction, but may rather work as load when pile spacing ratio is narrower than a certain interval. So it was found that adjustment for appropriate pile spacing ratio is required at the stage of design. This study has shown that the pile spacing ratio is appropriate at around 0.7~0.8, which reduces ground destruction and does not function as the load of excavated back ground.

The study of combustion characteristics and emissions with the variation of design factor on slit gas burner (슬릿버너에서 형상변화가 연소특성 및 배기배출물에 미치는 영향)

  • Kim, Tae-Woo;Cho, Seung-Wan;Chang, Young-June;Jeon, Chung-Hwan
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.314-319
    • /
    • 2005
  • In this study, the combustion characteristics were investigated with the variation of design factors on multiple slit gas burner. The design factors consist of slit height, width, spacing, and inner length. The combustion characteristics were made analysis of the CO emission and NOx emission by using CO analyzer and NOx analyzer. The lower perimeter to area and the narrow spacing extends the lift-flame limit. The CO emission increases with the increasing perimeter to area ratio at the same condition. The NOx emission is found to be less significant with the port perimeter to area ratio. The flame interference might highly depend on the spacing and port perimeter to area ratio, and it also affects the burner performance.

  • PDF

Influence of Concrete Strength and Lateral Ties on Behavior of High-Strength Concrete Columns (고강도 콘크리트 기둥의 거동에 미치는 콘크리트 강도와 띠철근의 영향)

  • Lee, Young-Ho;Chung, Heon-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.2
    • /
    • pp.245-253
    • /
    • 2002
  • This study was focused on the effect of concrete strength and lateral ties of concrete columns using high-strength concrete. Thirty-six concrete columns with 20cm square cross-section were tested. Experimental parameters included the concrete strength, the distribution of longitudinal bars and the volumetric ratio, yield strength, spacing of lateral ties. From the experiments, we found that: 1) the increasing rate of the strength and ductility of concrete columns caused by confinement of lateral ties was decreasing, as the concrete strength increased. 2) The high volumetric ratio and the reduction of tie spacing had a tendency to enhance the strength and improve the ductility. 3) The high-strength concrete columns required high volumetric ratio of lateral ties to maintain the proper strength and ductility. It was observed that the current AIK design code to specify the maximum tie spacing of high-strength concrete columns led to the poor strength and ductility for seismic design.

Correction of Fluoroscopic Image for Nucleoplasty in Lumbar Disc (요추디스크 수핵감압술을 위한 투시영상의 교정)

  • Yun, Young Woo;Kang, Se Sik;Choi, Seok Yoon
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.5
    • /
    • pp.359-365
    • /
    • 2016
  • Fluoroscopy is performed when tissue or organ in the human body is examined, and it is used for diagnosis and procedure in back ailments. With regard to fluoroscopy equipment, distortion occurs on the peripheral part of fluoroscopic image rather than on its central part. This study measured distortion factors of vertical spacing ratio and distortion factor of diagonal spacing ratio before and after correction by applying a correction algorithm. According to measuring the vertical spacing ratio, post-correction standard deviation decreased by 0.04 in comparison with pre-correction one. Also measuring the diagonal spacing ratio, post-correction standard deviation decreased by 0.06 in comparison with pre-correction one. Consequently, the distortion of fluoroscopic image decreased after correction. A decrease in the distortion of image through the application of correction algorithm and the improvement of performance will be helpful in finding a correct position of lumbar puncture in nucleoplasty to treat lumbar disc herniation in the future.

The Variation of Tagging Contrast-to-Noise Ratio (CNR) of SPAMM Image by Modulation of Tagline Spacing

  • Kang, Won-Suk;Park, Byoung-Wook;Choe, Kyu-Ok;Lee, Sang-Ho;Soonil Hong;Haijo Jung;Kim, Hee-Joung
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.360-362
    • /
    • 2002
  • Myocardial tagging technique such as spatial modulation of magnetization (SPAMM) allows the study of myocardial motion with high accuracy. Tagging contrast of such a tagging images can affect to the accuracy of the estimation of tag intersection in order to analyze the myocardial motion. Tagging contrast can be affected by tagline spacing. The aim of this study was to investigate the relationship between tagline spacing of SPAMM image and tagging contrast-to-noise ratio (CNR) experimentally. One healthy volunteer was undergone electrocardiographically triggered MR imaging with SPAMM-based tagging pulse sequence at a 1.5T MR scanner (Gyroscan Intera, Philips Medical System, Netherland). Horizontally modulated stripe patterns were imposed with a range from 3.6mm to 9.6mm of tagline spacing. Images of the left ventricle (LV) wall were acquired at the mid-ventricle level during cardiac cycle with FEEPI (TR/TE/FA=5.8/2.2/10). Tagging CNR for each image was calculated with a software which developed in our group. During contraction, tagging CNR was more rapidly decreased in case of short tagline spacing than in case of long tagline spacing. In the same heart phase, CNR was increased corresponding with tag line spacing. Especially, at the fully contracted heart phase, CNR was more rapidly increased than the other heart phases as a function of tagline spacing.

  • PDF