• Title/Summary/Keyword: Spaceborne Antenna

Search Result 22, Processing Time 0.017 seconds

Spaceborne High Speed Data Link Design for Multi-Mode SAR Image Data Transmission

  • Kwag, Young-Kil
    • Journal of electromagnetic engineering and science
    • /
    • v.2 no.1
    • /
    • pp.39-44
    • /
    • 2002
  • A high speed data link capability is one of the critical factors in determining the performance of the spaceborne SAR system with high resolution because of the strict requirement far the real-time data transmission of the massive SAR data in a limited time of mission. In this paper, based on the data lint model characterized by the spaceborne small SAR system, the high rate multi-channel data link module is designed including link storage, link processor, transmitter, and wide-angle antenna. The design results are presented with the performance analysis on the data link budget as well as the multi-mode data rate in association with the SAR imaging mode of operation from high resolution to the wide swath.

Study on Spaceborne SAR System Performance Improvements Using Antenna Pattern Resynthesis in Presence of Element Failure (안테나 소자 결함을 고려한 안테나 빔 패턴 재합성을 통한 위성 SAR 성능향상에 대한 연구)

  • Kang, Min-Seok;Won, Young-Jin;Lim, Byoung-Gyun;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.8
    • /
    • pp.624-631
    • /
    • 2018
  • To meet the requirements of various satellite synthetic aperture radar(SAR) system performance parameters, the characteristics of the antenna pattern should be analyzed. In this paper, we propose a method to improve the SAR system performance using an effective technique for optimizing antenna pattern synthesis in the presence of element failure. The desired antenna pattern can be synthesized by referring to the optimized antenna mask templates using the particle swarm optimization algorithm. In the simulation, the performance of the proposed method is verified by analyzing characteristics related to the SAR system performance parameters using antenna pattern regeneration.

Thermal Analysis of APD Electronics for Activation of a Spaceborne X-band 2-axis Antenna (위성 데이터 전송용 2축 짐벌식 X-band 안테나 구동용 전장품 APD 열 해석)

  • Ha, Heon-Woo;Kang, Soo-Jin;Kim, Tae-Hong;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.2
    • /
    • pp.1-6
    • /
    • 2016
  • The thermal analysis of electronic equipment is required to predict the reliability of electronic equipment being loaded on a satellite. The transient heat transfer of electronic equipment that was developed recently has been generated using a large-scale integration circuit. If there is a transient heat transfer between EEE(Electric, Electronic and Electro mechanical) parts, it may lead to failure the satellite mission. In this study, we performed the thermal design and analysis for reliability of APD(Antenna Pointing Driver) electronics for activation of a spaceborne X-band 2-axis antenna. The EEE parts were designed using a thermal mathematical model without the thermal mitigation element. In addition, thermal analysis was performed based on the worst case for verifying the reliability of EEE parts. For the thermal analysis results, the thermal stability of electronic equipment has been demonstrated by satisfying the de-rating junction temperature.

Multi-Channel Data Link Module Design for High Speed Image Data Transmission from Spaceborne SAR (위성 영상 레이다의 고속자료 전송을 위한 멀티 채널 데이터 전송 모듈 설계와 성능 특징)

  • Kwag, Young-Kil
    • Journal of Advanced Navigation Technology
    • /
    • v.5 no.2
    • /
    • pp.149-157
    • /
    • 2001
  • A high speed data link capability is one of the critical factors in determining the performance of the spaceborne SAR system with high resolution. It is due to the strict requirement for the real-time data transmission from a series of massive raw image data of spaceborne SAR to the ground station in a limited time of mission. In this paper, based on the data link model characterized by the spaceborne small SAR system, the high rate multi-channel data link module is designed including link storage, link processor, transmitter, and wide-angle antenna. The design results are presented with the performance analysis on the data link budget as well as the multi-mode data rate in association with the SAR imaging mode of operation from high resolution to the wide swath.

  • PDF

Spaceborne Data Link Design for High Rate Radar Imaging Data Transmission (고속 레이다 영상자료 전송을 위한 위성탑재 데이터 링크 설계)

  • Gwak, Yeong-Gil
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.3
    • /
    • pp.117-124
    • /
    • 2002
  • A high speed data link capability is one of the critical factors in determining the performance of the spaceborne SAR system with high resolution because of the strict requirement for the real-time data transmission of the massive SAR data in a limited time of mission. In this paper, based on the data link model characterized by the spaceborne small SAR system, the high rate multi-channel data link module is designed including link storage, link processor, transmitter, and wide-angle antenna. The design results are presented with the performance analysis on the data link budget as well as the multi-mode data rate in association with the SAR imaging mode of operation from high resolution to the wide swath. The designed data link module can be effectively used for the spaceborne and airborne applications which requires to expand the high speed data link capability.

Design of Deployable Lightweight Antenna for Satellite SAR (위성 SAR 센서용 전개형 경량화 안테나 설계)

  • Lee, Taek-Kyung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.11
    • /
    • pp.1104-1112
    • /
    • 2014
  • We present a design of the deployable lightweight antenna to be used in the satellite satisfying the required performance of the onboard sensor. The analysis is performed on the SAR antenna requirements, deploying techniques including material selection, and the characterization of deployable antenna with central disk. The performance of the solid deployable antennas and the mesh antennas are simulated, and the CFRP(Carbon Fiber Reinforced Plastics) samples are manufactured and tested. It is confirmed that the deployable antennas with central disk can meet the required performance by using deploying panels or mesh.

Multi-Channel High Speed Data Link Design for Small SAR Satellite Image Data Transmission

  • Kwag, Young K.
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1436-1439
    • /
    • 2002
  • In this paper, based on the data link model characterized by the spaceborne small SAR system, the high rate multi-channel data link module is designed including link storage, link processor, transmitter, and wide-angle antenna. The design results are presented with the performance analysis on the data link budget as well as the multi-mode data rate in association with the SAR imaging mode of operation from high resolution to the wide swath.

  • PDF

Conductivity Evaluation of a Newly Proposed Material for a SAR Reflector Antenna

  • Yoon, Seong Sik;Lee, Jae Wook;Lee, Taek Kyung;Roh, Jin Ho;Kim, Hark Inn;Yi, Dong Woo
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.3
    • /
    • pp.293-298
    • /
    • 2014
  • Large spaceborne antennas should be lightweight, a factor related to the development costs of launch vehicles. In order to overcome this drawback, a feasibility study of a new carbon fiber reinforced polymer (CFRP) named M55J/RS3 is carried out for a synthetic aperture radar (SAR) reflector antenna. In particular, the high resolution of detected images is taken into consideration. To validate the electrical performance, a test of the CFRP specimen is fabricated, and the transmission/reflection coefficients are measured using a standard X-band waveguide. Finally, the effective complex permittivity and effective electrical conductivity are derived from the obtained measured data. By applying the derived conductivity to the simulation of the radiation pattern, antenna gain, and beamwidth-instead of relying on the assumption of a perfect electric conductor-variations in electrical performance are also investigated and discussed.

Structural Analysis of Spaceborne Two-axis Gimbal-type Antenna of Compact Advanced Satellite (차세대 중형위성용 2축 짐벌식 안테나의 구조해석)

  • Park, Yeon-Hyeok;You, Chang-Mok;Kang, Eun-Su;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.2
    • /
    • pp.37-45
    • /
    • 2018
  • A two-axis gimbal-type antenna for a Compact Advanced Satellite (CAS) is used to efficiently transmit high resolution image data to a ground station. In this study, we designed the structure of a two-axis gimbal-type antenna while applying a launch lock device to secure its structural safety under a launch environment. To validate the effectiveness of the structural design, a structural analysis of the antenna was performed. First, a modal analysis was performed to investigate the dynamic responses of the antenna with and without the mechanical constraints of the launch lock device. In addition, a quasi-static analysis was performed to confirm the structural safety of the antenna structure and bolt I/Fs between the antenna base and the satellite. The suitable range of constraint force on the launch lock device was also determined to ensure the structural safety and mechanical gapping of the ball & socket interfaces, which places multi-constraints on the azimuth and elevation stage of the antenna.

Development of System Performance Analysis Simulator for Spaceborne Synthetic Aperture Radar (위성용 영상레이더 시스템 성능 분석 시뮬레이터 개발)

  • Won, Young-Jin;Lee, Jae-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.4
    • /
    • pp.318-327
    • /
    • 2017
  • Synthetic Aperture Radars (SARs) that can be performed regardless of weather and day-and-night conditions have been developed for Earth remote sensing in recent decades. Korea Aerospace Research Institute (KARI) has developed and launched successfully the KOrea Multi-Purpose SATellit-5 (KOMPSAT-5) which is the first Korean SAR satellite in 2013, and is currently developing the KOMPSAT-6 which is the next generation series of the SAR satellite. This paper describes the development of the system performance analysis simulator which is necessary for spaceborne SAR payload design and analysis. The system performance analysis simulator consists of the antenna pattern generation simulator, the SAR performance analysis simulator, and the image quality analysis simulator. The simulation results of this research show that this simulator can be applicable as the design and analysis tool for the spaceborne SAR payload system during the design phase.