DOI QR코드

DOI QR Code

Design of Deployable Lightweight Antenna for Satellite SAR

위성 SAR 센서용 전개형 경량화 안테나 설계

  • Lee, Taek-Kyung (School of Electronics, Telecommunication and Computer Engineering, Korea Aerospace University)
  • 이택경 (한국항공대학교 항공전자 및 정보통신공학부)
  • Received : 2014.10.10
  • Accepted : 2014.11.04
  • Published : 2014.11.30

Abstract

We present a design of the deployable lightweight antenna to be used in the satellite satisfying the required performance of the onboard sensor. The analysis is performed on the SAR antenna requirements, deploying techniques including material selection, and the characterization of deployable antenna with central disk. The performance of the solid deployable antennas and the mesh antennas are simulated, and the CFRP(Carbon Fiber Reinforced Plastics) samples are manufactured and tested. It is confirmed that the deployable antennas with central disk can meet the required performance by using deploying panels or mesh.

위성에 활용하기 위한 전개형 경량화 안테나를 구현하기 위하여 사용되는 센서의 요구 성능을 충족하는 안테나의 설계방법을 제시하였다. 탑재되는 SAR(Synthetic Aperture Radar)의 성능을 충족하기 위한 안테나의 제반 특성과 전개방법 및 재료, 중앙판이 있는 전개형 안테나의 특성을 분석하였다. 경량화 안테나로 솔리드 전개형 안테나와 메쉬 전개형 안테나의 전개 성능을 분석하고, 사용 재료로서 CFRP(Carbon Fiber Reinforced Plastics)의 특성을 실험하였다. 중앙판이 있는 전개형 안테나의 경우, 전개 패널과 메쉬를 사용하는 경우 요구 성능을 충족할 수 있음을 확인하였다.

Keywords

References

  1. W. A. Imbriale, S. Gae, and L. Boccia, Space Antenna Handbook, Wiley, 2012.
  2. William A. Imbriale, Spaceborne Antennas for Planetary Exploration, Wiley Inter-Science Inc., pp. 305-317, 2006.
  3. R. Taylor, D. Turse, P. Keller, and L. Adams, "Large aperture, solid surface deployable reflector", Earth Science Technology Forum, 2010.
  4. L. T. Tan, S. Pellegrino, "Ultra thin deployable reflector antennas", 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference AIAA 2004-1730, Apr. 2004.
  5. Eastwood Im, Mark Thomson, Houfei Fang, James Pearson, James Moore, and John Lin, "Prospects of large deployable reflector antennas for a new generation of geostationary Doppler weather radar satellites", AIAA SPACE 2007 Conference & Exposition, AIAA 2007-9917, Sep. 2007.
  6. Freeland, Robert et al., "Inflatable antenna technology with preliminary shuttle experiment results and potential applications", 18th Annual Meeting and Symposium, Antenna Measurement Techniques Association, Seattle, Sep. Oct. 1996.
  7. 김혜정, 노진호, 이수용, "경량화 위성 안테나의 기술개발 동향", 한국우주시스템공학회, 2011년.
  8. C. Elichi, Spaceborne Radar Remote Sensing Applications and Techniques, IEEE Press, 1988.
  9. Seong Sik Yoon, Jae Wook Lee, Taek Kyung Lee, and Dong Woo Yi, "Parameter selection procedure of parabolic reflector antenna for the optimum synthetic aperture radar performances", Journal of Electromagnetic Engineering and Science, vol. 13, no. 4, pp. 251-258, Dec. 2013. https://doi.org/10.5515/JKIEES.2013.13.4.251
  10. Westphal, Manfred.(1990), United State Patent, Patent Number : 4,899,167, Date of Patent : Feb. 6.
  11. S. D. Guest, S. Pellegrino, "A new concept for solid surface deployable antennas", Acta Astronautica, vol. 38, no. 2, pp. 103-113, Jan. 1996. https://doi.org/10.1016/0094-5765(96)00009-4
  12. Torben K. Heriksen, "Trend in materials requirements in spacecraft structures and mechanisms materials", KTN 2nd Annual General Meeting, Apr. 2008.
  13. L. Tuanjie, "Deployment analysis and control of deployable space antenna", Aerospace Science and Technology, vol. 18, no. 1, pp. 42-47, Apr. 2012. https://doi.org/10.1016/j.ast.2011.04.001
  14. L. Datashvili, M. Lang, H. Bairer, and T. Sixt, "Membranes for large and precision deployable reflectors", Proc. of European Conference on Spacecraft Structures, Material & Mechanical Testing, May 2005.
  15. Y. J. Liu, H. Y. Du, L. W. Liu, and J. S. Leng, "Shape memory polymers and their composite in aerospace applications: a review", Smart Materials and Structures, vol. 23, no. 2, 2014.
  16. M. S. Lake, D. Campbell, "The fundamental of designing deployable structures with elastic memory composite", IEEE Aerospace Conference, vol. 4, pp. 2745-2756, Mar. 2004.