• Title/Summary/Keyword: Space vehicles-Space vehicles

Search Result 708, Processing Time 0.028 seconds

Structural Design Optimization of the Aluminum Space Frame Vehicle (알루미늄 스페이스 프레임 차량의 구조 최적화 설계 기법)

  • Kang, Hyuk;Kyoung, Woo-Min
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.175-180
    • /
    • 2008
  • Due to the global environment problems and the consumer's need for higher vehicle performance, it becomes very important for the global car makers to reduce vehicle weight. To reduce vehicle weight, many car makers have tried to use lightweight materials, for example, aluminum, magnesium, and plastics, for the vehicle structures and components. Especially, the ASF(aluminum space frame) is known for the excellent concept of the vehicle to satisfy structural rigidity, safety performance and weight reduction. In this research, the design of experiments and the multi-disciplinary optimization technique were utilized to meet the weight and structural rigidity target of the ASF. For the structural performance of the ASF, the locations and the size of aluminum extruded frames, aluminum cast nodes, and the aluminum sheets were optimized. As a result, the optimization design procedure has been set up to meet both structural and weight target of the ASF, and the assembled ASF showed good structural performance and weight reduction.

Optimal Path Planning for UAVs to Reduce Radar Cross Section

  • Kim, Boo-Sung;Bang, Hyo-Choong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.1
    • /
    • pp.54-65
    • /
    • 2007
  • Parameter optimization technique is applied to planning UAVs(Unmanned Aerial Vehicles) path under artificial enemy radar threats. The ground enemy radar threats are characterized in terms of RCS(Radar Cross Section) parameter which is a measure of exposure to the radar threats. Mathematical model of the RCS parameter is constructed by a simple mathematical function in the three-dimensional space. The RCS model is directly linked to the UAVs attitude angles in generating a desired trajectory by reducing the RCS parameter. The RCS parameter is explicitly included in a performance index for optimization. The resultant UAVs trajectory satisfies geometrical boundary conditions while minimizing a weighted combination of the flight time and the measure of ground radar threat expressed in RCS.

ASCENT THERMAL ANALYSIS OF FAIRING OF SPACE LAUNCH VEHICLE

  • Choi Sang-Ho;Kim Seong-Lyong;Kim Insun
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.239-242
    • /
    • 2004
  • The fairing of the launch vehicles has a role of protecting the spacecraft from outer thermal, acoustical, and mechanical loads during flight. Among them, the thermal load is analyzed in the present study. The ascent thermal analyses include aerodynamic heating rate on every point of the fairing, heat transfer through the fairing and spacecraft, and the final temperature during ascent flight phase. A design code based on theoretical/experimental database is applied to calculate the aerodynamic heating rate, and a thermal math program, SINDA/Fluint, is considered for conductive heat transfer of the fairing. The results show that the present design satisfies the allowing temperature of the structure. Another important thermal problem, pyro explosive fairing separation device, is calculated because the pyro system is very sensitive to the temperature. The results also satisfies the pyro thermal condition.

  • PDF

Feed-Forward Approach in Stator-Flux-Oriented Direct Torque Control of Induction Motor with Space Vector Pulse-Width Modulation

  • Kizilkaya, Muhterem Ozgur;Gulez, Kayhan
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.994-1003
    • /
    • 2016
  • Two major obstacles in the utilization of electrical vehicles are their price and range. The collaboration of direct torque control (DTC) with induction motor (IM) is preferred for its low cost, easy implementation, and parameter independency. However, in terms of edges, the method has drawbacks, such as variable switching frequency and undesired current harmonic distortion. These drawbacks result in acoustic noise, reduced efficiency, and electromagnetic interference. A feed-forward approach for stator-flux-oriented DTC with space vector pulse-width modulation is presented in in this paper. The outcome of the proposed method is low current harmonic distortion with fixed switching frequency while preserving the torque performance and simple application feature of basic DTC. The method is applicable to existing and forthcoming IM drive systems via software adaptation. The validity of the proposed method is confirmed by simulation and experimental results.

Optimal Design to Improve Launch Velocity of Coilgun Launching System (코일건 발사 시스템의 발사속도 향상을 위한 최적설계)

  • Park, Chang Hyung;Kim, Jin Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.5
    • /
    • pp.131-136
    • /
    • 2018
  • Research on space development and satellites is being actively pursued. An interesting field is the study of reliable low-cost space launch vehicles. Since chemical fuel-based launching systems are expensive and take a lot of time and cost to maintain, the EML system, which is an electromagnetic force launching apparatus, is attracting attention. The EML system converts electrical energy stored in a capacitor into magnetic energy, and converts magnetic energy into mechanical kinetic energy, thereby accelerating the projectile. Although studies are actively conducted in the field, it is difficult to solve the equation because the impedance and speedance change with time and the nonlinearity is strong. Many researchers have solved this equation in a variety of methods. In this paper, the velocity analysis of the projectile was carried out by FEM (finite element method) using the commercial electromagnetic analysis program MAXWELL.

Performance Analysis of KSLV-II Launch Vehicle with Liquid Rocket Boosters (액체로켓 부스터를 부착한 한국형발사체의 발사 성능 분석)

  • Yang, Won-Seok;Choi, Jeong-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.7
    • /
    • pp.544-551
    • /
    • 2014
  • A program of launch vehicle performance analysis is composed for the education of the conceptual design of launch vehicles and the requirement analysis for the propulsion system design. The program is applied for the mission analysis of space launch vehicles based on KSLV-II with liquid rocket boosters. The 75-ton class liquid rocket engine is assumed for the boosters by referring the mass ratio of KSLV-II second stage. The launch performance analysis is carried out for KSLV-II with 2, 3 and 4 boosters by targeting the circular orbit of 700 km altitude. The trajectory is assumed as two-dimension considering the variation of the flight environment. Payload of advanced KSLV-II could be increased to maximum 3 tons, though it is limited by the thrust performance of the upper stage.

Pulse-mode Response Characteristics of a Small LRE for the Precise 3-axes Control of Flight Attitude in SLV (우주발사체의 비행자세 3축 정밀제어를 위한 소형 액체로켓엔진의 펄스모드 응답특성)

  • Jung, Hun;Kim, Jong Hyun;Kim, Jeong Soo;Bae, Dae Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • A liquid-monopropellant hydrazine thruster has several outstanding advantages such as relatively-simple structure, long/stable propellant storability, clean exhaust products, and so on. Therefore hydrazine thruster has such a wide application as orbit and attitude control system (ACS) for space vehicles. A hydrazine thruster with the medium-level thrust to be used in the ACS of space launch vehicles (SLV) has been developed, and its ground firing test result is presented in terms of thrust, impulse bit, temperature, and chamber pressure. It is verified through the performance test that the response and repeatability of thrust are very excellent, and the thrust efficiencies compared to its ideal requirement are larger than 93%.

Sensitivity Analysis of Major Cost Parameters on the Launch Cost of Reusable Vehicles (재사용발사체의 발사비용에 미치는 가격인자들의 민감도 분석)

  • Yang, Soo Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.2
    • /
    • pp.35-42
    • /
    • 2020
  • Recently the reusable launch vehicle is being a major trend in the worldwide space market, because a few commercial companies, especially SpaceX, are trying to cut down the launch price through developing and succeeding the reusable launch vehicles. However, there is still a big controversy about whether in view point of the launch cost which is more favorable between expendable and reusable. Therefore, a study and close examination is required for the launch cost in the early development phase of the reusable launch vehicle. In this study the sensitivity analysis is performed with respect to the major cost parameters which have great effects on the launch cost and price. The standard vehicle of this sensitivity analysis is the expendable vehicle having a payload 20 tons. The cost estimation relationships used in this calculation are referred from the commonly proven cost models such as TRANSCOST. The major cost parameters chosen in this study are as follows: development cost, production cost, refurbishment cost, and maximum reusable number.

Toroidal-Shaped Coils for a Wireless Power Transfer System for an Unmanned Aerial Vehicle

  • Park, Jaehyoung;Kim, Jonghoon;Shin, Yujun;Park, Bumjin;Kim, Won-Seok;Cheong, Seok-Jong;Ahn, Seungyoung
    • Journal of electromagnetic engineering and science
    • /
    • v.19 no.1
    • /
    • pp.48-55
    • /
    • 2019
  • Unmanned aerial vehicles (UAVs) using communications, sensors, and navigation equipment will play a key role in future warfare. Currently, UAVs are monitored to prevent misfire and accidents, and the conventional method adopted uses wires for data transmission and power supply. The repeated connection and disconnection of cables increases maintenance time and harms the connector. For convenience and stability, a wireless power transfer system to power UAVs is needed. Unlike other wireless power transfer (WPT) applications, the size of the receiving coils must be small, so that the WPT systems can be embedded inside space-limited UAVs. The small size reduces the coupling coefficient and transfer efficiency between the transmitting and the receiving coils. In this study, we propose a toroidal-shaped coil for a WPT system for UAVs with high coupling coefficient with minimum space requirements. For validation, conventional coils and the proposed toroidal-shaped coil were used and their coupling coefficient and power transfer efficiency were compared using simulated and measured results. The simulated and measured results were strongly correlated, confirming that the proposed WPT system significantly improved efficiency with negligible change in the space requirement.

An optimization framework to tackle challenging cargo accommodation tasks in space engineering

  • Fasano, Giorgio;Gastaldi, Cristina;Piras, Annamaria;Saia, Dario
    • Advances in aircraft and spacecraft science
    • /
    • v.1 no.2
    • /
    • pp.197-218
    • /
    • 2014
  • Quite a demanding task frequently arises in space engineering, when dealing with the cargo accommodation of modules and vehicles. The objective of this effort usually aims at maximizing the loaded cargo, or, at least, at meeting the logistic requirements posed by the space agencies. Complex accommodation rules are supposed to be taken into account, in compliance with strict balancing conditions and very tight operational restrictions. The context of the International Space Station (ISS) has paved the way for a relevant research and development activity, providing the company with a remarkable expertise in the field. CAST (Cargo Accommodation Support Tool) is a dedicated in-house software package (funded by the European Space Agency, ESA, and achieved by Thales Alenia Space), to carry out the whole loading of the Automated Transfer Vehicle (ATV). An ad hoc version, tailored to the Columbus (ISS attached laboratory) on-board stowage issue, has been further implemented and is to be used from now on. This article surveys the overall approach followed, highlighting the advantages of the methodology put forward, both in terms of solution quality and time saving, through an overview of the outcomes obtained to date. Insights on possible extensions to further space applications, especially in the perspective of the paramount challenges of the near future, are, in addition, presented.