• 제목/요약/키워드: Space vehicles: instruments

검색결과 11건 처리시간 0.023초

The First Multi-Frequency Synthesis Space-VLBI Observations of 0059+581 with Radioastron

  • Alexey Rudnitskiy;Mikhail Shchurov;Taehyun Jung;Marcello Giroletti
    • 천문학회지
    • /
    • 제56권1호
    • /
    • pp.91-96
    • /
    • 2023
  • In this paper, we describe the first multi-frequency synthesis observations of blazar 0059+581 made with the Radioastron space-ground interferometer in conjunction with the Korean VLBI Network (KVN), Medicina and Torun ground telescopes. We conducted these observations to assess the spaceground interferometer multi-frequency mode capability for the first time.

THE NEXT-GENERATION INFRARED SPACE MISSION SPICA: PROJECT UPDATES

  • Nakagawa, Takao;Shibai, Hiroshi;Kaneda, Hidehiro;Kohno, Kotaro;Matsuhara, Hideo;Ogawa, Hiroyuki;Onaka, Takashi;Roelfsema, Peter;Yamada, Toru;SPICA Team
    • 천문학논총
    • /
    • 제32권1호
    • /
    • pp.331-335
    • /
    • 2017
  • We present project updates of the next-generation infrared space mission SPICA (Space Infrared Telescope for Cosmology and Astrophysics) as of November 2015. SPICA is optimized for mid- and far-infrared astronomy with unprecedented sensitivity, which will be achieved with a cryogenically cooled (below 8 K), large (2.5 m) telescope. SPICA is expected to address a number of key questions in various fields of astrophysics, ranging from studies of the star-formation history in the universe to the formation and evolution of planetary systems. The international collaboration framework of SPICA has been revisited. SPICA under the new framework passed the Mission Definition Review by JAXA in 2015. A proposal under the new framework to ESA is being prepared. The target launch year in the new framework is 2027/28.

THE NEXT-GENERATION INFRARED ASTRONOMY MISSION SPICA UNDER THE NEW FRAMEWORK

  • NAKAGAWA, TAKAO;SHIBAI, HIROSHI;ONAKA, TAKASHI;MATSUHARA, HIDEO;KANEDA, HIDEHIRO;KAWAKATSU, YASUHIRO
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.621-624
    • /
    • 2015
  • We present the current status (as of August 2014) of SPICA (Space Infrared Telescope for Cosmology and Astrophysics), which is a mission optimized for mid- and far-infrared astronomy with a cryogenically cooled 3m-class telescope. SPICA is expected to achieve high spatial resolution and unprecedented sensitivity in the mid- and far-infrared, which will enable us to address a number of key problems in present-day astronomy, ranging from the star-formation history of the universe to the formation of planets. We have carried out the "Risk Mitigation Phase" activity, in which key technologies essential to the realization of the mission have been extensively developed. Consequently, technical risks for the success of the mission have been significantly mitigated. Along with these technical activities, the international collaboration framework of SPICA has been revisited, which resulted in la arger contribution from ESA than that in the original plan. To enable the ESA participation under the new framework, a SPICA proposal to ESA is under consideration as a medium-class mission under the framework of the ESA Cosmic Vision. The target launch year of SPICA under the new framework is the mid-2020s.

THE AKARI PROJECT: LEGACY AND DATA PROCESSING STATUS

  • NakagawaI, Takao;Yamamura, Issei
    • 천문학논총
    • /
    • 제32권1호
    • /
    • pp.5-9
    • /
    • 2017
  • This paper provides an overview of the AKARI mission, which was the first Japanese satellite dedicated to infrared astronomy. The AKARI satellite was launched in 2006, and performed both an all-sky survey and pointed observations during its 550 days in the He-cooled mission phases (Phases 1 and 2). After the He ran out, we continued near-infrared observations with mechanical cryocoolers (Phase 3). Due to a failure of its power supply, AKARI was turned off in 2011. The AKARI data are unique in terms of the observed wavelengths as well as the sky coverage, and provide a unique legacy resource for many astronomical studies. Since April 2013, a dedicated new team has been working to refine the AKARI data processing. The goal of this activity is to provide processed datasets for most of the AKARI observations in a Science Ready form, so that more users can utilize the AKARI data in their astronomical research. The data to be released will include revised All-Sky Point Source Catalogues, All-Sky Image Maps, as well as high-sensitivity images and spectra obtained by pointed observations. We expect that the data will be made public by in the Spring of 2016.

AN EXTENSION OF A RELIABLE WAVELENGTH COVERAGE OF THE AKARI NG GRISM MODE

  • Baba, Shunsuke;Nakagawa, Takao;Isobe, Naoki;Shirahata, Mai;Ohyama, Youichi;Yano, Kenichi;Kochi, Chihiro
    • 천문학논총
    • /
    • 제32권1호
    • /
    • pp.45-47
    • /
    • 2017
  • The Infrared Camera onboard the AKARI satellite carried out spectroscopic observations with a grism mode named NG, whose wavelength coverage was $2.5-5.0{\mu}m$. We reinvestigate the current flux calibration for the NG grism mode, with which calculated flux density implausibly decreases at $4.9{\mu}m$ especially for red objects due to the second-order light contamination. We perform a new spectral response calibration using blue and red standard objects simultaneously. New response curves which contain both the first-and second-order light are able to separate each contribution consistently and useful for studies of red objects such as CO ro-vibrational absorption in active galactic nuclei.

TOWARD A NEXT GENERATION SOLAR CORONAGRAPH: DIAGNOSTIC CORONAGRAPH EXPERIMENT

  • Cho, Kyung-Suk;Yang, Heesu;Lee, Jae-Ok;Bong, Su-Chan;Kim, Jihun;Choi, Seonghwan;Park, Jongyeob;Cho, Kyuhyoun;Baek, Ji-Hye;Kim, Yeon-Han;Park, Young-Deuk
    • 천문학회지
    • /
    • 제53권4호
    • /
    • pp.87-98
    • /
    • 2020
  • The Korea Astronomy and Space Science Institute (KASI) has been developing a next-generation coronagraph (NGC) in cooperation with NASA to measure the coronal electron density, temperature, and speed simultaneously, using four different optical filters around 400 nm. KASI organized an expedition to demonstrate the coronagraph measurement scheme and the instrumental technology during the 2017 total solar eclipse (TSE) across the USA. The observation site was in Jackson Hole, Wyoming, USA. We built an eclipse observation system, the Diagnostic Coronal Experiment (DICE), composed of two identical telescopes to improve the signal-to-noise ratio. The observation was conducted at four wavelengths and three linear polarization directions in the limited total eclipse time of about 140 seconds. We successfully obtained polarization data for the corona but we were not able to obtain information on the coronal electron temperature and speed due to the low signal-to-noise ratio of the optical system and strong emission from prominences located at the western limb. In this study, we report the development of DICE and the observation results from the eclipse expedition. TSE observation and analysis with our self-developed instrument showed that a coronagraph needs to be designed carefully to achieve its scientific purpose. We gained valuable experience for future follow-up NASA-KASI joint missions: the Balloon-borne Investigation of the Temperature and Speed of Electrons in the Corona (BITSE) and the COronal Diagnostic EXperiment (CODEX).

파이로충격 모사장비 특성분석 (On the Characteristics of Pyroshock Simulator)

  • 전영두;임종민;서상현;정의승;조광래
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.172-175
    • /
    • 2005
  • Since, similar to other commercial launch vehicles, various kinds of pyrotechnique devices are used in the KSLV-I(Korea Space Launch Vehicle), the electronic equipment on the vehicle equipment bay is exposed to the sever pyroshock environment during Pyrotechnique device detonation. In order to confirm the survivability of electrical instruments from these pyroshock conditions, shock tests are performed by using a pyroshock simulation during development and qualification phase. In this paper, the pyroshock simulator installed in KARI(Korea Aerospace Research Institute) are briefly introduced, and its performance of pyroshock generating is compared with the measured shock response spectrums from small scaled fairing jettisoning tests. The results show that the pyroshock simulator is still proper to generate severe pyroshocks similar to real pyrotechique detonating conditions, but the redesign on the test jigs is necessary to improve its test performance.

  • PDF

Opening New Horizons with the L4 Mission: Vision and Plan

  • Kyung-Suk Cho;Junga Hwang;Jeong-Yeol Han;Seong-Hwan Choi;Sung-Hong Park;Eun-Kyung Lim;Rok-Soon Kim;Jungjoon Seough;Jong-Dae Sohn;Donguk Song;Jae-Young Kwak;Yukinaga Miyashita;Ji-Hye Baek;Jaejin Lee;Jinsung Lee;Kwangsun Ryu;Jongho Seon;Ho Jin;Sung-Jun Ye;Yong-Jae, Moon;Dae-Young Lee;Peter H. Yoon;Thiem Hoang;Veerle Sterken;Bhuwan Joshi;Chang-Han Lee;Jongjin Jang;Jae-Hwee Doh;Hwayeong Kim;Hyeon-Jeong Park;Natchimuthuk Gopalswamy;Talaat Elsayed;John Lee
    • 천문학회지
    • /
    • 제56권2호
    • /
    • pp.263-275
    • /
    • 2023
  • The Sun-Earth Lagrange point L4 is considered as one of the unique places where the solar activity and heliospheric environment can be observed in a continuous and comprehensive manner. The L4 mission affords a clear and wide-angle view of the Sun-Earth line for the study of the Sun-Earth and Sun-Moon connections from he perspective of remote-sensing observations. In-situ measurements of the solar radiation, solar wind, and heliospheric magnetic field are critical components necessary for monitoring and forecasting the radiation environment as it relates to the issue of safe human exploration of the Moon and Mars. A dust detector on the ram side of the spacecraft allows for an unprecedented detection of local dust and its interactions with the heliosphere. The purpose of the present paper is to emphasize the importance of L4 observations as well as to outline a strategy for the planned L4 mission with remote and in-situ payloads onboard a Korean spacecraft. It is expected that the Korean L4 mission can significantly contribute to improving the space weather forecasting capability by enhancing the understanding of heliosphere through comprehensive and coordinated observations of the heliosphere at multi-points with other existing or planned L1 and L5 missions.

우주폐기물과 지구 및 우주환경의 보호 (The Problem of Space Debris and the Environmental Protection in Outer Space Law)

  • 이영진
    • 항공우주정책ㆍ법학회지
    • /
    • 제29권2호
    • /
    • pp.205-237
    • /
    • 2014
  • 지난 반세기동안 세계 각국에서 쏘아올린 인공위성 등 각종 우주물체들로 인하여 우주환경을 오염시키는 우주폐기물이나 잔해들이 기하급수적으로 늘어나고 특히 지구궤도에 널린 수만개 이상의 고장난 위성과 파편, 쓰레기들은 우주 관측과 위성 송수신에 오류를 일으키거나 우주정거장이나 위성 등 우주비행체와 충돌위험을 야기하고 있다. 예컨대 지난 2009년 2월 기능정지된 위성들인 미국 이리듐사의 통신위성 이리듐 33호와 러시아의 코스모스 2251호의 충돌은 수많은 파편과 더불어 지구와 우주환경에 심각한 위협이 되었으며 또한 2007년 1월 중국에 의한 자국위성 파괴실험은 보다 커다란 우주의 남용 사례로서 우주의 안전을 저해한다는 점에서 국제적인 비난을 불러 일으켰다. 실제로 우주환경이나 폐기물에 관한 문제들이 상당기간동안 과학적 연구와 논의의 대상이 되어온 것은 사실이나 주지하다시피 우주개발의 초기단계에서는 우주활동을 위한 기본 규칙제정을 위한 법적 성격의 규명이나 우주탐사와 이용에 필요한 기준을 마련하는데 주안점을 두어왔다. 따라서 결과적으로 우주활동과정에서 야기될지 모르는 환경훼손의 문제나 위험요소들은 국제우주법의 발전이라는 맥락에서도 우선순위에서 밀렸다는 사실을 지적하지 않을 수 없다. 지금까지 우주폐기물이 우주활동의 양적인 증가와 더불어 늘어났다는 시각외에도 임무실패나 상호 충돌 및 고의적인 파괴나 폭발 등으로 인해 기하급수적으로 증가하고 있다는 사실을 고려할 때 과거에는 뒷전에 밀렸던 우주폐기물 양산에 따른 안전 문제가 차츰 우선적 관심의 대상으로 부각되고 있는 바 이러한 추세는 최근의 UN의 페기물 경감 가이드라인이나 EU 행동규범 등 갖가지 국제협력과 규범화차원의 노력들을 통해 확인할 수 있을 것이다. 이들 가이드 라인이나 행동규범 등 연성법을 통해 각 회원국과 국제기구는 국제적 이행절차 및 각자의 고유한 집행절차에 따라 우주폐기물의 경감에 있어서 가능한 최대한 도로 이행하는 자발적 조치를 취하는 유통성을 부여하고 있다. 본 논문에서는 이런 관점에서 최근 중국에 의한 위성파괴와 관련한 적법성 여하와 국제사회의 우주폐기물에 대한 경감 등 대응 노력과 과제 등을 살펴보고자 하였다.

해양포유류 부착 CTD 관측 자료의 품질 관리 방법에 관한 고찰 및 사례 연구 (Quality Control Methods for CTD Data Collected by Using Instrumented Marine Mammals: A Review and Case Study)

  • 윤승태;이원영
    • Ocean and Polar Research
    • /
    • 제43권4호
    • /
    • pp.321-334
    • /
    • 2021
  • 'Marine mammals-based observations' refers to data acquisition activities from marine mammals by instrumenting CTD (Conductivity-Temperature-Depth) sensors on them for recording vertical profiles of ocean variables such as temperature and salinity during animal diving. It is a novel data collecting platform that significantly improves our abilities in observing extreme environments such as the Southern Ocean with low cost compared to the other conventional methods. Furthermore, the system continues to create valuable information until sensors are detached, expanding data coverage in both space and time. Owing to these practical advantages, the marine mammals-based observations become popular to investigate ocean circulation changes in the Southern Ocean. Although these merits may bring us more opportunities to understand ocean changes, the data should be carefully qualified before we interpret it incorporating shipboard/autonomous vehicles/moored CTD data. In particular, we need to pay more attention to salinity correction due to the usage of an unpumped-CTD sensor tagged on marine mammals. In this article, we introduce quality control methods for the marine mammals-based CTD profiles that have been developed in recent studies. In addition, we discuss strategies of quality control specifically for the seal-tagging CTD profiles, successfully having been obtained near Terra Nova Bay, Ross Sea, Antarctica since February 2021. It is the Korea Polar Research Institute's research initiative of animal-borne instruments monitoring in the region. We anticipate that this initiative would facilitate collaborative efforts among Polar physical oceanographers and even marine mammal behavior researchers to understand better rapid changes in marine environments in the warming world.