• Title/Summary/Keyword: Space vehicles: instruments

Search Result 11, Processing Time 0.027 seconds

The First Multi-Frequency Synthesis Space-VLBI Observations of 0059+581 with Radioastron

  • Alexey Rudnitskiy;Mikhail Shchurov;Taehyun Jung;Marcello Giroletti
    • Journal of The Korean Astronomical Society
    • /
    • v.56 no.1
    • /
    • pp.91-96
    • /
    • 2023
  • In this paper, we describe the first multi-frequency synthesis observations of blazar 0059+581 made with the Radioastron space-ground interferometer in conjunction with the Korean VLBI Network (KVN), Medicina and Torun ground telescopes. We conducted these observations to assess the spaceground interferometer multi-frequency mode capability for the first time.

THE NEXT-GENERATION INFRARED SPACE MISSION SPICA: PROJECT UPDATES

  • Nakagawa, Takao;Shibai, Hiroshi;Kaneda, Hidehiro;Kohno, Kotaro;Matsuhara, Hideo;Ogawa, Hiroyuki;Onaka, Takashi;Roelfsema, Peter;Yamada, Toru;SPICA Team
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.331-335
    • /
    • 2017
  • We present project updates of the next-generation infrared space mission SPICA (Space Infrared Telescope for Cosmology and Astrophysics) as of November 2015. SPICA is optimized for mid- and far-infrared astronomy with unprecedented sensitivity, which will be achieved with a cryogenically cooled (below 8 K), large (2.5 m) telescope. SPICA is expected to address a number of key questions in various fields of astrophysics, ranging from studies of the star-formation history in the universe to the formation and evolution of planetary systems. The international collaboration framework of SPICA has been revisited. SPICA under the new framework passed the Mission Definition Review by JAXA in 2015. A proposal under the new framework to ESA is being prepared. The target launch year in the new framework is 2027/28.

THE NEXT-GENERATION INFRARED ASTRONOMY MISSION SPICA UNDER THE NEW FRAMEWORK

  • NAKAGAWA, TAKAO;SHIBAI, HIROSHI;ONAKA, TAKASHI;MATSUHARA, HIDEO;KANEDA, HIDEHIRO;KAWAKATSU, YASUHIRO
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.621-624
    • /
    • 2015
  • We present the current status (as of August 2014) of SPICA (Space Infrared Telescope for Cosmology and Astrophysics), which is a mission optimized for mid- and far-infrared astronomy with a cryogenically cooled 3m-class telescope. SPICA is expected to achieve high spatial resolution and unprecedented sensitivity in the mid- and far-infrared, which will enable us to address a number of key problems in present-day astronomy, ranging from the star-formation history of the universe to the formation of planets. We have carried out the "Risk Mitigation Phase" activity, in which key technologies essential to the realization of the mission have been extensively developed. Consequently, technical risks for the success of the mission have been significantly mitigated. Along with these technical activities, the international collaboration framework of SPICA has been revisited, which resulted in la arger contribution from ESA than that in the original plan. To enable the ESA participation under the new framework, a SPICA proposal to ESA is under consideration as a medium-class mission under the framework of the ESA Cosmic Vision. The target launch year of SPICA under the new framework is the mid-2020s.

THE AKARI PROJECT: LEGACY AND DATA PROCESSING STATUS

  • NakagawaI, Takao;Yamamura, Issei
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.5-9
    • /
    • 2017
  • This paper provides an overview of the AKARI mission, which was the first Japanese satellite dedicated to infrared astronomy. The AKARI satellite was launched in 2006, and performed both an all-sky survey and pointed observations during its 550 days in the He-cooled mission phases (Phases 1 and 2). After the He ran out, we continued near-infrared observations with mechanical cryocoolers (Phase 3). Due to a failure of its power supply, AKARI was turned off in 2011. The AKARI data are unique in terms of the observed wavelengths as well as the sky coverage, and provide a unique legacy resource for many astronomical studies. Since April 2013, a dedicated new team has been working to refine the AKARI data processing. The goal of this activity is to provide processed datasets for most of the AKARI observations in a Science Ready form, so that more users can utilize the AKARI data in their astronomical research. The data to be released will include revised All-Sky Point Source Catalogues, All-Sky Image Maps, as well as high-sensitivity images and spectra obtained by pointed observations. We expect that the data will be made public by in the Spring of 2016.

AN EXTENSION OF A RELIABLE WAVELENGTH COVERAGE OF THE AKARI NG GRISM MODE

  • Baba, Shunsuke;Nakagawa, Takao;Isobe, Naoki;Shirahata, Mai;Ohyama, Youichi;Yano, Kenichi;Kochi, Chihiro
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.45-47
    • /
    • 2017
  • The Infrared Camera onboard the AKARI satellite carried out spectroscopic observations with a grism mode named NG, whose wavelength coverage was $2.5-5.0{\mu}m$. We reinvestigate the current flux calibration for the NG grism mode, with which calculated flux density implausibly decreases at $4.9{\mu}m$ especially for red objects due to the second-order light contamination. We perform a new spectral response calibration using blue and red standard objects simultaneously. New response curves which contain both the first-and second-order light are able to separate each contribution consistently and useful for studies of red objects such as CO ro-vibrational absorption in active galactic nuclei.

TOWARD A NEXT GENERATION SOLAR CORONAGRAPH: DIAGNOSTIC CORONAGRAPH EXPERIMENT

  • Cho, Kyung-Suk;Yang, Heesu;Lee, Jae-Ok;Bong, Su-Chan;Kim, Jihun;Choi, Seonghwan;Park, Jongyeob;Cho, Kyuhyoun;Baek, Ji-Hye;Kim, Yeon-Han;Park, Young-Deuk
    • Journal of The Korean Astronomical Society
    • /
    • v.53 no.4
    • /
    • pp.87-98
    • /
    • 2020
  • The Korea Astronomy and Space Science Institute (KASI) has been developing a next-generation coronagraph (NGC) in cooperation with NASA to measure the coronal electron density, temperature, and speed simultaneously, using four different optical filters around 400 nm. KASI organized an expedition to demonstrate the coronagraph measurement scheme and the instrumental technology during the 2017 total solar eclipse (TSE) across the USA. The observation site was in Jackson Hole, Wyoming, USA. We built an eclipse observation system, the Diagnostic Coronal Experiment (DICE), composed of two identical telescopes to improve the signal-to-noise ratio. The observation was conducted at four wavelengths and three linear polarization directions in the limited total eclipse time of about 140 seconds. We successfully obtained polarization data for the corona but we were not able to obtain information on the coronal electron temperature and speed due to the low signal-to-noise ratio of the optical system and strong emission from prominences located at the western limb. In this study, we report the development of DICE and the observation results from the eclipse expedition. TSE observation and analysis with our self-developed instrument showed that a coronagraph needs to be designed carefully to achieve its scientific purpose. We gained valuable experience for future follow-up NASA-KASI joint missions: the Balloon-borne Investigation of the Temperature and Speed of Electrons in the Corona (BITSE) and the COronal Diagnostic EXperiment (CODEX).

On the Characteristics of Pyroshock Simulator (파이로충격 모사장비 특성분석)

  • Chun, Young-Doo;Im, Jong-Min;Seo, Sang-Hyun;Chung, Eui-Seung;Cho, Gwang-Rae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.172-175
    • /
    • 2005
  • Since, similar to other commercial launch vehicles, various kinds of pyrotechnique devices are used in the KSLV-I(Korea Space Launch Vehicle), the electronic equipment on the vehicle equipment bay is exposed to the sever pyroshock environment during Pyrotechnique device detonation. In order to confirm the survivability of electrical instruments from these pyroshock conditions, shock tests are performed by using a pyroshock simulation during development and qualification phase. In this paper, the pyroshock simulator installed in KARI(Korea Aerospace Research Institute) are briefly introduced, and its performance of pyroshock generating is compared with the measured shock response spectrums from small scaled fairing jettisoning tests. The results show that the pyroshock simulator is still proper to generate severe pyroshocks similar to real pyrotechique detonating conditions, but the redesign on the test jigs is necessary to improve its test performance.

  • PDF

Opening New Horizons with the L4 Mission: Vision and Plan

  • Kyung-Suk Cho;Junga Hwang;Jeong-Yeol Han;Seong-Hwan Choi;Sung-Hong Park;Eun-Kyung Lim;Rok-Soon Kim;Jungjoon Seough;Jong-Dae Sohn;Donguk Song;Jae-Young Kwak;Yukinaga Miyashita;Ji-Hye Baek;Jaejin Lee;Jinsung Lee;Kwangsun Ryu;Jongho Seon;Ho Jin;Sung-Jun Ye;Yong-Jae, Moon;Dae-Young Lee;Peter H. Yoon;Thiem Hoang;Veerle Sterken;Bhuwan Joshi;Chang-Han Lee;Jongjin Jang;Jae-Hwee Doh;Hwayeong Kim;Hyeon-Jeong Park;Natchimuthuk Gopalswamy;Talaat Elsayed;John Lee
    • Journal of The Korean Astronomical Society
    • /
    • v.56 no.2
    • /
    • pp.263-275
    • /
    • 2023
  • The Sun-Earth Lagrange point L4 is considered as one of the unique places where the solar activity and heliospheric environment can be observed in a continuous and comprehensive manner. The L4 mission affords a clear and wide-angle view of the Sun-Earth line for the study of the Sun-Earth and Sun-Moon connections from he perspective of remote-sensing observations. In-situ measurements of the solar radiation, solar wind, and heliospheric magnetic field are critical components necessary for monitoring and forecasting the radiation environment as it relates to the issue of safe human exploration of the Moon and Mars. A dust detector on the ram side of the spacecraft allows for an unprecedented detection of local dust and its interactions with the heliosphere. The purpose of the present paper is to emphasize the importance of L4 observations as well as to outline a strategy for the planned L4 mission with remote and in-situ payloads onboard a Korean spacecraft. It is expected that the Korean L4 mission can significantly contribute to improving the space weather forecasting capability by enhancing the understanding of heliosphere through comprehensive and coordinated observations of the heliosphere at multi-points with other existing or planned L1 and L5 missions.

The Problem of Space Debris and the Environmental Protection in Outer Space Law (우주폐기물과 지구 및 우주환경의 보호)

  • Lee, Young Jin
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.29 no.2
    • /
    • pp.205-237
    • /
    • 2014
  • Last 50 years there were a lot of space subjects launched by space activities of many states and these activities also had created tremendous, significant space debris contaminating the environment of outer space. The large number of space debris which are surrounding the earth have the serious possibilities of destroying a satellite or causing huge threat to the space vehicles. For example, Chinese anti-satellite missile test was conducted by China on January 11, 2007. As a consequence a Chinese weather satellite was destroyed by a kinetic kill vehicle traveling with a speed of 8 km/s in the opposite direction. Anti-satellite missile tests like this,contribute to the formation of enormous orbital space debris which can remain in orbit for many years and could interfere with future space activity (Kessler Syndrome). The test is the largest recorded creation of space debris in history with at least 2,317 pieces of trackable size (golf ball size and larger) and an estimated 150,000 debris particles and more. Several nations responded negatively to the test and highlighted the serious consequences of engaging in the militarization of space. The timing and occasion aroused the suspicion of its demonstration of anti-satellite (ASAT) capabilities following the Chinese test of an ASAT system in 2007 destroying a satellite but creating significant space debris. Therefore this breakup seemed to serve as a momentum of the UN Space Debris Mitigation Guidelines and the background of the EU initiatives for the International Code of Conduct for Outer Space Activities. The UN Space Debris Mitigation Guidelines thus adopted contain many technical elements that all the States involved in the outer space activities are expected to observe to produce least space debris from the moment of design of their launchers and satellites until the end of satellite life. Although the norms are on the voluntary basis which is normal in the current international space law environment where any attempt to formulate binding international rules has to face opposition and sometimes unnecessary screening from many corners of numerous countries. Nevertheless, because of common concerns of space-faring countries, the Guidelines could be adopted smoothly and are believed faithfully followed by most countries. It is a rare success story of international cooperation in the area of outer space. The EU has proposed an International Code of Conduct for Outer Space Activities as a transparency and confidence-building measure. It is designed to enhance the safety, security and sustainability of activities in outer space. The purpose of the Code to reduce the space debris, to allow exchange of the information on the space activities, and to protect the space objects through safety and security. Of the space issues, the space debris reduction and the space traffic management require some urgent attention. But the current legal instruments of the outer space do not have any binding rules to be applied thereto despite the incresing activities on the outer space. We need to start somewhere sometime soon before it's too late with the chaotic situation. In this article, with a view point of this problem, focused on the the Chinese test of an ASAT system in 2007 destroying a satellite but creating significant space debris and tried to analyse the issues of space debris reduction.

Quality Control Methods for CTD Data Collected by Using Instrumented Marine Mammals: A Review and Case Study (해양포유류 부착 CTD 관측 자료의 품질 관리 방법에 관한 고찰 및 사례 연구)

  • Yoon, Seung-Tae;Lee, Won Young
    • Ocean and Polar Research
    • /
    • v.43 no.4
    • /
    • pp.321-334
    • /
    • 2021
  • 'Marine mammals-based observations' refers to data acquisition activities from marine mammals by instrumenting CTD (Conductivity-Temperature-Depth) sensors on them for recording vertical profiles of ocean variables such as temperature and salinity during animal diving. It is a novel data collecting platform that significantly improves our abilities in observing extreme environments such as the Southern Ocean with low cost compared to the other conventional methods. Furthermore, the system continues to create valuable information until sensors are detached, expanding data coverage in both space and time. Owing to these practical advantages, the marine mammals-based observations become popular to investigate ocean circulation changes in the Southern Ocean. Although these merits may bring us more opportunities to understand ocean changes, the data should be carefully qualified before we interpret it incorporating shipboard/autonomous vehicles/moored CTD data. In particular, we need to pay more attention to salinity correction due to the usage of an unpumped-CTD sensor tagged on marine mammals. In this article, we introduce quality control methods for the marine mammals-based CTD profiles that have been developed in recent studies. In addition, we discuss strategies of quality control specifically for the seal-tagging CTD profiles, successfully having been obtained near Terra Nova Bay, Ross Sea, Antarctica since February 2021. It is the Korea Polar Research Institute's research initiative of animal-borne instruments monitoring in the region. We anticipate that this initiative would facilitate collaborative efforts among Polar physical oceanographers and even marine mammal behavior researchers to understand better rapid changes in marine environments in the warming world.