• 제목/요약/키워드: Space law

Search Result 1,366, Processing Time 0.024 seconds

Development and Validation of Urea- SCR Control-Oriented Model for NOX and NH3 Slip Reduction (NOX 및 NH3 Slip 저감을 위한 Urea-SCR 제어기반 모델 개발 및 검증)

  • Lee, Seung Geun;Lee, Seang Wock;Kang, Yeonsik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • To satisfy stricter $NO_X$ emission regulations for light- and heavy-duty diesel vehicles, a control algorithm needs to be developed based on a selective catalytic reaction (SCR) dynamics model for chemical reactions. This paper presents the development and validation of a SCR dynamics model through test rig experiments and MATLAB simulations. A nonlinear state space model is proposed based on the mass conservation law of chemical reactions in the SCR dynamics model. Experiments were performed on a test rig to evaluate the effects of the $NO_X$ and $NH_3$ concentrations, gas temperature, and space velocity on the $NO_X$ conversion efficiency for the urea-SCR system. The parameter values of the proposed SCR model were identified using the experimental datasets. Finally, a control-oriented model for an SCR system was developed and validated from the experimental data in a MATLAB simulation. The results of this study should contribute toward developing a closed-loop control strategy for $NO_X$ and $NH_3$ slip reduction in the urea-SCR system for an actual engine test bench.

A Case Study on the Ventilation and Heat Environment in a Underground Limestone Mine with Rampway (Rampway 설치 석회석 광산내 환기 현황 및 열환경 분석 사례연구)

  • Kim, Doo-Young;Lee, Seung-Ho;Jeong, Kyu-Hong;Lee, Chang-Woo
    • Tunnel and Underground Space
    • /
    • v.22 no.3
    • /
    • pp.163-172
    • /
    • 2012
  • As more diesel engines have been employed in underground limestone mines with large cross section, underground space environment is worsened by diesel exhausts and heat flow. This paper aims for the ultimate goal to optimize the work place environment through assuring the optimal required ventilation rate based on the analysis of the airflow, diesel exhaust gas concentrations and the effects of mechanization and deepening working face on temperature and humidity. Due to the insufficient capacity of the main exhaust fan and poor airway management, stagnant airflows were observed at various locations, while the flow direction was reversed instantly with passing diesel equipment and the flow reversal was also made by the seasonal variation of the outside surface weather. During the loading operation, CO concentration measurements were found to be frequently higher than the threshold limit of 50 ppm, and most of the $NO_2$ measurements during drilling and loading operations shows even more serious levels surpassing the permissible limit of 3 ppm. The actual ventilation quantity was considerably less than the required quantity estimated by the mine health and safety law, and this shortage problem was less serious in colder winter showing more effectiveness of the natural ventilation.

Exploration of underground utilities using method predicting an anomaly (이상대 판정기법을 활용한 지하매설물 탐사)

  • Ryu, Hee-Hwan;Kim, Kyoung-Yul;Lee, Kang-Ryel;Lee, Dae-Soo;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.3
    • /
    • pp.205-214
    • /
    • 2015
  • Rapid urbanization and industrialization have caused increased demand for underground structures such as cable, and other utility tunnels. Recently, it has become very difficult to construct new underground structures in downtown areas because of civil complaints, and engineering problems related to insufficient information about existing underground structures, cable tunnels in particular. This lack of information about the location and direction-of-travel of cable tunnels is causing many problems. To solve these problems, this study was focused on the use of geophysical exploration of the ground in a way that is theoretically, different from previous electrical resistivity surveys. An electric field analysis was performed on the ground with cable tunnels using Gauss' law and the Laplace equation. The electrical resistivity equation, which is a function of the cable tunnel direction, the cable tunnel location, and the electrical conductivity of the cable tunnel, can be obtained through electrical field analysis. A field test was performed for the verification of this theoretical approach. A field test results provided meaningful data.

PREDICTION OF THE SUN-GLINT LOCATIONS FOR THE COMMUNICATION, OCEAN AND METEOROLOGICAL SATELLITE (통신해양기상위성에서의 태양광 반사점(SUN-GLINT) 위치예측)

  • Park, Jae-Ik;Choil, Kyu-Hong;Payk, Sang-Young;Ryu, Joo-Hyung;Ahn, Yu-Hwan;Park, Jae-Woo;Kim, Byoung-Soo
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.3
    • /
    • pp.263-272
    • /
    • 2005
  • For the Communication, Ocean and Meteorological Satellite (COMS) which will be launched in 2008, an algorithm for finding the precise location of the sun-glint point on the ocean surface is studied. The precise locations of the sun-glint are estimated by considering azimuth and elevation angles of Sun-satellite-Earth geometric position and the law of reflection. The obtained nonlinear equations are solved by using the Newton-Raphson method. As a result, when COMS is located at $116.2^{\circ}E$ or $128.2^{\circ}E$ longitude, the sun-glint covers region of ${\pm}10^{\circ}(N-S)$ latitude and $80-150^{\circ}(E-W)$ longitude. The diurnal path of the sun-glint in the southern hemisphere is curved towards the North Pole, and the path in the northern hemisphere is forwards the south pole. The algorithm presented in this paper can be applied to predict the precise location of sun-glint region in any other geostationary satellites.

A Study on the Changes the Urban Space at Station Influenced Areas by the Open of Incheon Urban Railroad Line 1 (인천광역시 도시철도 1호선 개통에 따른 역세권 도시공간 변화 연구)

  • Ahn, Jung Geun;Park, Man Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1D
    • /
    • pp.141-148
    • /
    • 2011
  • City of Incheon opened rapid transit(urban railroad line 1) in 1999 in order to relieve traffic congestion on major arterials. This research analyzed urban space changes of each station influenced area by examining the changes of residents, industrial employees, and floor area ratios before and after the open of Incheon urban railroad line 1. Analysis of variance was applied to change of station influence area. This research found out that the types of central business and agricultural station influence area had been changed significantly after the open of urban railroad. However, the residential, semi-residential, and suburban type of station influence area had not been changed after the open of urban railroad. Thus, it is necessary to provide diverse facilities for inducing residents and employees to the station influence area of residential and semi-residential. Furthermore, the suburban type of station influence area which is difficult to develop naturally by the law of Green Belt is needed to develop station influence area simultaneously with the construction of a station building.

A numerical study on the 3-Dimensional shape characteristics of small underground cavities (소규모 지하공동 3차원 형상 특성을 반영한 수치해석에 관한 연구)

  • An, Joon-Sang;Kang, Kyung-Nam;Son, Ki-Il;Kim, Woo-Seok;Kim, Byung-Chan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.5
    • /
    • pp.787-807
    • /
    • 2018
  • When conducting the underground safety impact assessment under the special law in Korea, it is essential to investigate the occurrence of underground cavities. When underground cavities were discovered, the underground safety was assessed through numerical analysis. The previous study has suggested the stability evaluation based on the factor of safety by changing the 2D shape of the small underground cavity. In this study, the effects of small underground cavities considering 3D shapes were examined using a continuum analysis program and compared with the 2D results presented in previous study. If the 3-Dimensional shape of the underground cavity is found close to the sphere type, it would be reasonable to evaluate the factor of safety by the shear strength reduction method regardless of the size and position of the cavity. If a high-aspect ratio underground cavity with a depth of 2 m or more from the ground surface and an aspect ratio (a/b) of 2.0 or more is in the vertical direction, not only the factor of safety but the failure mode shape should be cautions in the stability evaluation using the shear strength reduction method. The results of this study are expected to be basic data on underground safety impact assessment.

Development of UAV Flight Control Software using Model-Based Development(MBD) Technology (모델기반 개발기술을 적용한 무인항공기 비행제어 소프트웨어 개발)

  • Moon, Jung-Ho;Shin, Sung-Sik;Choi, Seung-Kie;Cho, Shin-Je;Rho, Eun-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.12
    • /
    • pp.1217-1222
    • /
    • 2010
  • This paper describes the Model-Based Development(MBD) process behind the flight control software of a close-range unmanned aerial vehicle(KUS-9). An integrated development environment was created using a commercial tool(MATLAB $Simulink^{(R)}$), which was utilized to design models for linear/nonlinear simulation, flight control law, operational logic and HILS(Hardware In the Loop Simulation) system. Software requirements were validated through flight simulations and peer reviews during the design process, whereas the models were verified through the application of a DO-178B verification tool. The integrity of automatically generated C code was verified by using a separate S/W testing tool. The finished software product was embedded on two different types of hardware and real-time operating system(uC/OS-II, VxWorks) to perform HILS and flight tests. The key findings of this study are that MBD Technology enables the development of a reusable and an extensible software product and auto-code generation technology allows the production of a highly reliable flight control software under a compressed time schedule.

A Study on the Preservation Method of Modern Registered Architectural Cultural Properties (근대건축 등록문화재의 보존 방안에 관한 연구)

  • Shin, Woong-Ju;Lee, Sang-Sun
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.16 no.1
    • /
    • pp.119-127
    • /
    • 2014
  • This study suggests institutional and methodological approaches for preservation of South Korea's registered cultural properties of modern architecture. The suggested approaches are as follows. First, in order to improve the current registration and preservation system for cultural properties, we need to employ both structure-based classification and style-based classification. Registration criteria for modern architecture properties need to include more detailed classification in terms of their structure: brick structure, steel concrete structure and post lintel structure. In terms of construction style, the properties need to be further classified into the western style, the traditional style and the Korean-western eclectic style. In addition, protection of registered cultural properties need to be achieved through legislation of a protection system. Second, while the current system sets out six methods for preservation of registered cultural properties of modern architecture, more specific preservation methods types and plans need to be continuously introduced. In particular, as for the method of partial preservation, the method needs to be further classified based on the usage of the relevant structure so as to allow for more diverse options. First, the 'Preservation by Interior Alteration' needs to be added to the category, where the exterior is preserved as it is and the interior is preserved through alteration. Also needs to be added the preservation method where the interior space is preserved as it is and the exterior space is altered, in case the finishing materials of the exterior has deteriorated. Third, if the records on registered cultural properties of modern architecture are to provide the functions of legal evidences regarding management of architectural cultural properties, sources of knowledge required for policy making and implementation and past management record for the future, each phase needs to be closely connected in an organic manner, and we need to establish a management system and plan that go beyond the relevant organizations. Fourth, in order to preserve South Korea's registered cultural properties of modern architecture in its original state, it is imperative to prepare separate criteria for registration of technicians with expertise on modern architecture, and train experts and technicians on modern architecture, which is distinguished from the traditional architecture.

Development of a Control Law to Pneumatic Control for an Anti-G Suit (Anti-G 슈트 공압 제어를 위한 제어법칙 개발)

  • Kim, Chong-sup;Hwang, Byung-moon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.6
    • /
    • pp.548-556
    • /
    • 2015
  • The highly maneuverable fighter aircraft such as F-22, F-16 and F-15have the high maneuverability to maximize the combat performance, whereas the high maneuver characteristics might degrade the pilot's mission efficiency due to fatigue's increase by exposing him to the high gravity and, in the worst case, the pilot could face GLOC (Gravity-induced Loss Of Consciousness). The advanced aerospace company has applied the various technologies to improve the pilot's tolerance to the gravity acceleration, in order to prevent the pilot from entering the situation of the loss of consciousness. Especially, the Anti-G Suit(AGS) equipment to protect the pilot against the high gravity in flight could improve the mission success rate by decreasing the pilot's fatigue in the combat maneuver as well as prevent the pilot from facing GLOC. In this paper, a control algorithm is developed and verified to provide an optimal air pressure to AGS according to the gravity increase during the high performance maneuver. This result is expected, as the key technology, to contribute to the KF-X(Korean Fighter eXperimental), project in the near future.

A Critical Note on the Electric Field in Direct and Alternating Current and Its Consciousness

  • Oh, Hung-Kuk
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2000.11a
    • /
    • pp.98-104
    • /
    • 2000
  • The conventional model did not take momentum conservation into consideration when the electron absorbs and emits the photons. II-ray provides momentum conservations on any directions of the entering photons, and also the electrons have radial momentum conservations and fully elastic bouncing between two atoms, in the new atom model. Conventional atom model must be criticized on the following four points. (1) Natural motions between positive and negative entities are not circular motions but linear going and returning ones, for examples sexual motion, tidal motion, day and night etc. Because the radius of hydrogen atom's electron orbit is the order of 10$^{-11}$ m and the radia of the nucleons in the nucleus are the order of 10$^{-14}$ m and then the converging $\pi$-gamma rays to the nucleus have so great circular momentum, the electron can not have a circular motion. We can say without doubt that any elementary mass particle can have only linear motion, because of the $\pi$-rays'hindrances, nearthenucleus. (2) Potential energy generation was neglected when electron changes its orbit from outer one to inner one. The h v is the kinetic energy of the photo-electron. The total energy difference between orbits comprises kinetic and potential energies. (3) The structure of the space must be taken into consideration because the properties of the electron do not change during the transition from outer orbit to inner one even though it produces photon. (4) Total energy conservation law applies to the energy flow between mind and matter because we daily experiences a interconnection between mind and body. Conventional Concept of Electric Field must be extended in the case of the direct and alternating current. Conventional concept is based on coulomb's force while the electric potential in the direct and alternating current is from Gibb's free energy. And also conventional concept has not any consciousness with human being but the latters has a conscious sensibility. The cell emf is from the kinetic energy of the open $\pi$-rays flow through the conducting wire. The electric potential in alternating current is from that the trans-orbital moving of the induced change of magnetic field in the wire produces flows of open $\pi$-rays, which push the rotating electrons on the orbital and then make the current flow. Human consciousness can induce a resonance with the sensibility of the open $\pi$-rays in the electric measuring equipment. Specially treated acupunctures with Nasucon is for sending an acupunctural effect from one place to another via space by someone's will power.

  • PDF