• Title/Summary/Keyword: Space beam element

Search Result 163, Processing Time 0.023 seconds

Aeroelastic Characteri stics of Rotor Blades with Trailing Edge Flaps

  • Lim, In-Gyu;Lee, In
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.1
    • /
    • pp.115-121
    • /
    • 2007
  • The aeroelastic analysis of rotor blades with trailing edge flaps, focused on reducing vibration while minimizing control effort, are investigated using large deflection-type beam theory in forward flight. The rotor blade aerodynamic forces are calculated using two-dimensional quasi-steady strip theory. For the analysis of forward flight, the nonlinear periodic blade steady response is obtained by integrating the full finite element equation in time through a coupled trim procedure with a vehicle trim. The objective function, which includes vibratory hub loads and active flap control inputs, is minimized by an optimal control process. Numerical simulations are performed for the steady-state forward flight of various advance ratios. Also, numerical results of the steady blade and flap deflections, and the vibratory hub loads are presented for various advance ratios and are compared with the previously published analysis results obtained from modal analysis based on a moderate deflection-type beam theory.

A Study on Assessment of Composite Couplings for Helicopter Rotor Blades with Multi-cell Sections

  • Jung, Sung-Nam;Park, Il-Ju;Shi, Eui-Sup;Chopra, Inderjit
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.4 no.1
    • /
    • pp.9-18
    • /
    • 2003
  • In this work, a closed-form analysis is performed for the structural response of coupled composite blades with multi-cell sections. The analytical model includes the effects of shell wall thickness, transverse shear, torsion warping and constrained warping. The mixed beam approach based on Reissner's semi-complementary energy functional is used to derive the beam force-displacement relations. The theory is validated against experimental test data and other analytical results for coupled composite beams and blades with single-cell box-sections and two-cell airfoils. Correlation of the present method with experimental results and detailed finite element results is found to be very good.

Dynamic analysis of porous functionally graded layered deep beams with viscoelastic core

  • Assie, Amr;Akbas, Seref D.;Kabeel, Abdallah M.;Abdelrahman, Alaa A.;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • v.43 no.1
    • /
    • pp.79-90
    • /
    • 2022
  • In this study, the dynamic behavior of functionally graded layered deep beams with viscoelastic core is investigated including the porosity effect. The material properties of functionally graded layers are assumed to vary continuously through thickness direction according to the power-law function. To investigate porosity effect in functionally graded layers, three different distribution models are considered. The viscoelastically cored deep beam is exposed to harmonic sinusoidal load. The composite beam is modeled based on plane stress assumption. The dynamic equations of motion of the composite beam are derived based on the Hamilton principle. Within the framework of the finite element method (FEM), 2D twelve -node plane element is exploited to discretize the space domain. The discretized finite element model is solved using the Newmark average acceleration technique. The validity of the developed procedure is demonstrated by comparing the obtained results and good agreement is detected. Parametric studies are conducted to demonstrate the applicability of the developed methodology to study and analyze the dynamic response of viscoelastically cored porous functionally graded deep beams. Effects of viscoelastic parameter, porosity parameter, graduation index on the dynamic behavior of porous functionally graded deep beams with viscoelastic core are investigated and discussed. Material damping and porosity have a significant effect on the forced vibration response under harmonic excitation force. Increasing the material viscosity parameters results in decreasing the vibrational amplitudes and increasing the vibration time period due to increasing damping effect. Obtained results are supportive for the design and manufacturing of such type of composite beam structures.

Various Structural Approaches to Analyze an Aircraft with High Aspect Ratio Wings

  • El Arras, Anas;Chung, Chan Hoon;Na, Young-Ho;Shin, SangJoon;Jang, SeYong;Kim, SangYong;Cho, Changmin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.4
    • /
    • pp.446-457
    • /
    • 2012
  • Aeroelastic analysis of an aircraft with a high aspect ratio wing for medium altitude and long endurance capability was attempted in this paper. In order to achieve such an objective, various structural models were adopted. The traditional approach has been based on a one-dimensional Euler-Bernoulli beam model. The structural analysis results of the present beam model were compared with those by the three-dimensional NASTRAN finite element model. In it, a taper ratio of 0.5 was applied; it was comprised of 21 ribs and 3 spars, and included two control surfaces. The relevant unsteady aerodynamic forces were obtained by using ZAERO, which is based on the doublet lattice method that considers flow compressibility. To obtain the unsteady aerodynamic force, the structural mode shapes and natural frequencies were transferred to ZAERO. Two types of unsteady aerodynamic forces were considered. The first was the unsteady aerodynamic forces which were based on the one-dimensional beam shape; the other was based on the three-dimensional FEM model shape. These two types of aerodynamic forces were compared, and applied to the foregoing flutter analysis. The ultimate goal of the present research is to analyze the possible interaction between the rigid-body degrees of freedom and the aeroelastic modes. This will be achieved after the development of a reliable nonlinear beam formulation that would validate the current results as well as enable a thorough investigation of the nonlinearity. Moreover, such analysis will allow for an examination of the above-mentioned interaction between the flight dynamics and aeroelastic modes with the inclusion of the rigid body degrees of freedom.

Development of Design Formulas for Pipe Loops Used in Ships Considering the Structural Characteristics of Curved Portions (곡선부의 구조 특성을 고려한 선박용 파이프 루프 설계식 개발)

  • Park, Chi-Mo;Bae, Byoung-Il
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.5
    • /
    • pp.87-93
    • /
    • 2012
  • Many longitudinally-arranged pipes in ships are equipped with loops as a measure to reduce stresses caused by displacement loads conveyed from the hull girder bending and/or thermal loads of carried fluid of non-ambient temperature. But as the loops have some negative effects such as causing extra manufacturing cost and occupying extra space, the number and the dimensions of the loops need to be minimized. In the meanwhile, a design formula for pipe loops has been developed by modeling them as a spring element of which stresses and axial stiffness are calculated based on the beam theory. But as the beam theory turns out to be inappropriate to deal with the complex structural behavior in the curved corner portion of the loop, this paper aims at improving the previously developed design formula by adopting correction factors which can allow for the gap between the results of beam theory and a more accurate analysis. This paper adopts a finite element analysis with two-dimensional shell elements with some validation work for it. The paper ends with a sample application of the proposed formulas showing their accuracy and efficiency.

Elasto-plastic Post-buckling Analysis of Spatial Framed Structures using Improved Plastic Hinge Theory (개선된 소성힌지이론을 이용한 공간 뼈대구조물의 탄-소성 후좌굴 해석)

  • Kim, Sung Bo;Ji, Tae Sug;Jung, Kyoung Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.6
    • /
    • pp.687-696
    • /
    • 2006
  • An efficient numerical method is developed to estimate the elasto-plastic post-buckling strength of space-framed structures. The inelastic ultimate strength of beam-columns and frames is evaluated by the parametric study. Applying the improved plastic hinge analysis that evaluate the gradual stiffness decrease effects due to spread of plasticity, elasto-plastic post-buckling behavior of steel frames is investigated considering the various residual stress distributions. Introducing the plastification parameter that represent pread of plasticity in the element and performing parametric study of equivalent element force and member idealization, finite-element solutions for the elasto-plastic analysis of space frames are compared with the results by plastic region analysis, shell elements and experimental results.

Influence of a soft FGM interlayer on contact stresses under a beam on an elastic foundation

  • Aizikovich, Sergey M.;Mitrin, Boris I.;Seleznev, Nikolai M.;Wang, Yun-Che;Volkov, Sergey S.
    • Structural Engineering and Mechanics
    • /
    • v.58 no.4
    • /
    • pp.613-625
    • /
    • 2016
  • Contact interaction of a beam (flexible element) with an elastic half-plane is considered, when a soft inhomogeneous (functionally graded) interlayer is present between them. The beam is bent under the action of a distributed load applied to the surface and a reaction of the elastic interlayer and the half-space. Solution of the contact problem is obtained for different values of thickness and parameters of inhomogeneity of the layer. The interlayer is assumed to be significantly softer than the underlying half-plane; case of 100 times difference in Young's moduli is considered as an example. The influence of the interlayer thickness and gradient of elastic properties on the distribution of the contact stresses under the beam is studied.

Analysis of elastic wave propagation in long beam using Fourier transformation

  • Mohammad Tahaye Abadi
    • Structural Engineering and Mechanics
    • /
    • v.87 no.2
    • /
    • pp.165-172
    • /
    • 2023
  • This paper presents a novel method for modeling elastic wave propagation in long beams. The proposed method derives a solution for the transient transverse displacement of the beam's neutral axis without assuming the separation of variables (SV). By mapping the governing equation from the space domain to the frequency domain using Fourier transformation (FT), the transverse displacement function is determined as a convolution integral of external loading functions and a combination of trigonometric and Fresnel functions. This method determines the beam's response to general loading conditions as a linear combination of the analytical response of a beam subjected to an abrupt localized loading. The proposed solution method is verified through finite element analysis (FEA) and wave propagation patterns are derived for tone burst loading with specific frequency contents. The results demonstrate that the proposed solution method accurately models wave dispersion, reduces computational cost, and yields accurate results even for high-frequency loading.

A Design of Gaussian Beam Guiding System for Cassegrain Antennas (카세그레인 안테나용 가우시안 빔 가이딩 시스템 설계)

  • Han, Seog-Tae;Lee, Jeong-Won;Kang, Jiman;Chung, Moon-Hee;Je, Do-Heung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.10
    • /
    • pp.851-868
    • /
    • 2015
  • A radio telescope which has been dominantly used for millimeter and submillimeter wave radio astronomy is a cassegrain antenna. A various receivers with specified observing bandwidths are installed on cassegrain antenna so as to carry out to investigate a diverse radio astronomy. A beam guiding system should be required so that a various receiver can be conducted their own observational frequency bands. The beam guiding system based on Gaussian beam transmission theory consists of quasi-optical circuit used such ellipsoidal mirror, dielectric lens and feed horn. In this paper, not only Gaussian beam transformations based on Gaussian beam theory are presented, but also design techniques for quasi-optical circuit are given. By using proposed design techniques, both Gaussian beam quasi-optical circuits to be used for cassegrain antenna and design results are also described. Properties of key focusing elements such ellipsoidal mirror and dielectric lens and feed horn are also discussed. It is expected that beam guiding system to be applied cassegrain antenna could be easily designed by using proposed design techniques.

Numerical modelling for monitoring the hysteretic behaviour of CFRP-retrofitted RC exterior beam-column joints

  • Mahini, Seyed S.;Ronagh, Hamid R.
    • Structural Engineering and Mechanics
    • /
    • v.38 no.1
    • /
    • pp.27-37
    • /
    • 2011
  • This paper presents the results of a study on the capability of nonlinear quasi-static finite element modelling in simulating the hysteretic behaviour of CFRP and GFRP-retrofitted RC exterior beam-column joints under cyclic loads. Four specimens including two plain and two CFRP/GFRP-strengthened beam-column joints tested by Mahini and Ronagh (2004) and other researchers are modelled using ANSYS. Concrete in compression is defined by the modified Hognestad model and anisotropic multi-linear model is employed for modelling the stress-strain relations in reinforcing bars while anisotropic plasticity is considered for the FRP composite. Both concrete and FRP are modelled using solid elements whereas space link elements are used for steel bars considering a perfect bond between materials. A step by step load increment procedure to simulate the cyclic loading regime employed in the testing. An automatically reforming stiffness matrix strategy is used in order to simulate the actual seismic performance of the RC concrete after cracking, steel yielding and concrete crushing during the push and pull loading cycles. The results show that the hysteretic simulation for all specimens is satisfactory and therefore suggest that the numerical model can be used as an inexpensive tool to design of FRP-strengthened RC beam-column joints under cyclic loads.