• Title/Summary/Keyword: Space beam element

Search Result 163, Processing Time 0.028 seconds

An Improved Finite Element Analysis Model of Offshore Cable-Supported Structures (해양 케이블 지지구조물의 구조해석을 위한 개선된 유한요소해석모델)

  • KIM SUN-HOON;SONG MYUNG-KWAN;NOH HYUK-CHUN
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.6 s.61
    • /
    • pp.51-57
    • /
    • 2004
  • In this study, the improved three-dimensional analysis model designed for a more accurate analysis of marine cable-supported structures, is presented. In this improved analysis model, the beam elements, of which the stability function is derived using Taylor's series expansions, are used to model space frame structures, and the truss elements. The equivalent elastic modulus of the truss elements is evaluated on the assumption that the deflection curve of a cable has a catenary function. By using the proposed three-dimensional analysis model, nonlinear static analysis is carried out for some cable-supported structures. The results are compared with previous studies and show good agreement with their findings.

Measurement of natural frequency of aluminum honeycomb sandwich beams using high speed digital cameras (고속 디지털 카메라를 이용한 알루미늄 하니콤 샌드위치 보의 고유 진동수 계측)

  • Goo, Nam Seo;Vang, Hoang My;Le, Vinh Tung;Jin, Tailie
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.1
    • /
    • pp.30-35
    • /
    • 2017
  • In this study, we measured the natural frequencies of aluminum honeycomb sandwich beams using digital image correlation technique. The vibration images were captured using two high speed digital cameras and the images were converted to displacements by the digital image correlation technique. Displacement data in time domain were tranformed to frequency domain data by fast Fourier transform software. To reduce noise invoked by random exitation, a spectrum averaging technique and Savitsky-Golay digital filter were adopted. A conventional vibration measurement using an accelerometer and a finite element analysis were performed to compare the results by high speed digital camera measurement method. In conclusion, new method using high speed digital cameras and digital image correlation technique can measure the vibration of beam structures and can be applied to bio-structures where sensors cannot be attached.

Modeling of rock dilation and spalling in an underground opening at depth (대심도 지하공동에 발생하는 암반의 팽창 및 스폴링 현상 모델링)

  • Cho, Nam-Kak;Lee, Yong-Joo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.1
    • /
    • pp.31-41
    • /
    • 2010
  • This paper presents both numerical and physical modeling approaches for the dilation and spalling of rock recognized as typical process of rock around an underground opening at depth. For physical approach, laboratory testing of rectangular beams using a synthetic rock was used to investigate the onset of dilation and spalling. The beams are axially compressed and subjected to 4-point bending to provide non-uniform compressive stresses which are similar to the maximum tangential stress distribution around circular openings. Discrete element numerical analyses using commercial code $PFC^{2D}$ (Particle Flow Code) were performed to evaluate the stress path at various locations in the beams. The findings from these approaches suggest that the onset of dilation in laboratory tests appears to be a good indicator for assessing the stress magnitudes required to initiate spalling.

THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS OF THE PHENOMENON PRODUCED DURING RETRACTION OF FOUR MAXILLARY INCISORS (상악 4절치의 후방견인시 나타나는 현상에 관한 유한요소법적 분석)

  • Cheon, Ok-Jin;Kim, Tae-Woo;Suhr, Cheong-Hoon
    • The korean journal of orthodontics
    • /
    • v.25 no.5 s.52
    • /
    • pp.525-541
    • /
    • 1995
  • This study was designed to investigate force systems and tooth movements produced by retraction archwire during retraction of four maxillary incisors after the maxillary canine retraction into the maxillary first premolar extraction space using the computer-aided three-dimensional finite element method. A three-dimensional finite element model, consisting of 2248 elements and 3194 nodes, was constructed. The model consisted of maxillary teeth and surrounding periodontal membranes, .022'$\times$.028'-slot brackets, and 5 types of retraction archwires(.019'$\times$.025' stainless steel archwire) modeled using the beam elements. The contact between the wire and the bracket slot was modeled using the gap elements because of the non-linear elastic behaviors of the contact between them. The forces and moments, End displacements produced by retraction archwire were measured at various conditions to investigate the difference according to types of loops, magnitudes of activation force, gable angle, and anterior lingual root torque. The results were expressed quantitative and visual ways in the three-dimensional method. The following conclusions can be drawn from this study.1. When the tear-drop loop archwire was activated, the mesio-distal and lingual translational movements of the teeth helped to close the extraction space, but unwanted movements of the teeth including intrusions and extrusions, and rotational movements in each direction occurred. 2. Activation of T-loop archwire compared with those of other types of retraction archwires produced the least translational movements of the teeth helped to space closure and also the least unwanted movements of the teeth. 3. Increasing amount of activation in the tear-drop archwire led not only to increase of translational movements of the teeth helped to space closure, but also to increase of unwanted movements of the teeth. 4. Addition of gable bend in the tear-drop archwire helped anterior teeth to translational movements in the mesio-distal direction, but increased unwanted movements of the teeth 5. Addition of anterior lingual root torque in the tear-drop archwire helped central and lateral incisor to improve their facio-lingual inclination, but increased unwanted movements of the teeth.

  • PDF

Load Distribution Factors for Two-Span Continuous I-Girder Bridges (2경간 연속 I-형교의 하중분배계수)

  • Back, Sung Yong;Shin, Gi Su
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.2
    • /
    • pp.233-245
    • /
    • 2007
  • Previous finite element studies have shown that AASHTO Standard load distribution factor (LDF) equations appear to be conservative for longer spans and larger girder spacing, but too permissible for short spans and girder spacing. AASHTO LRFD specification defines the distribution factor equation for girder spacing, span length, slab thickness, and longitudinal stiffness. However, this equation requires an iterative procedure to correctly determine the LDF value due to an initially unknown longitudinal stiffness parameter. This study presents a simplified LDF equation for interior and exterior girders of two-span continuous I-girder bridges that does not require an iterative design procedure. The finite element method was used to investigate the effect of girder spacing, span length, slab thickness, slab width, and spacing and size of bracing. The computer program, GTSTRUDL, was used to idealize the bridge superstructures as the eccentric beam model, the concrete slab by quadrilateral shell elements, steel girders by space frame members, and the composite action between these elements by rigid links. The distribution factors obtained from these analyses were compared with those from the AASHTO Standard and LRFD methods. It was observed through the parametric studies that girder spacing, span length, and slab thickness were the dominant parameters compared with others. The LRFD distribution factor for the interior girder was found to be conservative in most cases, whereas the factor for the exterior girder to be unconservative in longer spans. Furthermore, a regression analysis was performed to develop simplified LDF formulas. The formulas developed in this study produced LDF values that are always conservative to those from the finite element method and are generally smaller than the LDF values obtained from the AASHTO LRFD specification. The proposed simplified equation will assist bridge engineers in predicting the actual LDF in two-span continuous I-girder bridges.

Characteristics of Beam-tilting Slot Array Waveguide Antennas for DBS Reception (DBS 수신용 빔 틸트형 슬롯 어레이 도파관 안테나의 특성)

  • Min, Gyeong-Sik;Kim, Dong-Cheol;Arai, Hiroyuki
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.3
    • /
    • pp.140-149
    • /
    • 2002
  • This paper describes the characteristics of beam-tilting slot away waveguide antennas for mobile DBS reception. As a basic study of slotted waveguide array, design for 16 slot elements located on a broad-wall waveguide is considered. Design parameters such as slot length, space between each slot and cross slot angle of antennas with the beam-tilting characteristics are calculated by method of moments. Based on these results, the radiation waveguide antennas with 16-element $\times$16-array are designed and fabricated. The measured main beam direction angles of the fabricated antennas are 48$^{\circ}$to 50$^{\circ}$depending on the measured frequencies and it shows good agreement with prediction. The measured 3 dB beam width of elevation pattern is about 13$^{\circ}$, and the axial ratio and the gain measured at DBS band are observed 2.8 dB below and 24 dBi above, respectively. In order to evaluate a performance of the fabricated waveguide planar antenna, it is combined with the satellite tracking control system and the field performance test of antenna mounted on a mobile vehicle is carried out at highway. During the measurement, it was possible to watch television without a break signal in a driving vehicle and an excellent performance of the proposed antennas was demonstrated.

IGRINS Design and Performance Report

  • Park, Chan;Jaffe, Daniel T.;Yuk, In-Soo;Chun, Moo-Young;Pak, Soojong;Kim, Kang-Min;Pavel, Michael;Lee, Hanshin;Oh, Heeyoung;Jeong, Ueejeong;Sim, Chae Kyung;Lee, Hye-In;Le, Huynh Anh Nguyen;Strubhar, Joseph;Gully-Santiago, Michael;Oh, Jae Sok;Cha, Sang-Mok;Moon, Bongkon;Park, Kwijong;Brooks, Cynthia;Ko, Kyeongyeon;Han, Jeong-Yeol;Nah, Jakyuong;Hill, Peter C.;Lee, Sungho;Barnes, Stuart;Yu, Young Sam;Kaplan, Kyle;Mace, Gregory;Kim, Hwihyun;Lee, Jae-Joon;Hwang, Narae;Kang, Wonseok;Park, Byeong-Gon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.90-90
    • /
    • 2014
  • The Immersion Grating Infrared Spectrometer (IGRINS) is the first astronomical spectrograph that uses a silicon immersion grating as its dispersive element. IGRINS fully covers the H and K band atmospheric transmission windows in a single exposure. It is a compact high-resolution cross-dispersion spectrometer whose resolving power R is 40,000. An individual volume phase holographic grating serves as a secondary dispersing element for each of the H and K spectrograph arms. On the 2.7m Harlan J. Smith telescope at the McDonald Observatory, the slit size is $1^{{\prime}{\prime}}{\times}15^{{\prime}{\prime}}$. IGRINS has a plate scale of 0.27" pixel-1 on a $2048{\times}2048$ pixel Teledyne Scientific & Imaging HAWAII-2RG detector with a SIDECAR ASIC cryogenic controller. The instrument includes four subsystems; a calibration unit, an input relay optics module, a slit-viewing camera, and nearly identical H and K spectrograph modules. The use of a silicon immersion grating and a compact white pupil design allows the spectrograph collimated beam size to be 25mm, which permits the entire cryogenic system to be contained in a moderately sized ($0.96m{\times}0.6m{\times}0.38m$) rectangular Dewar. The fabrication and assembly of the optical and mechanical components were completed in 2013. From January to July of this year, we completed the system optical alignment and carried out commissioning observations on three runs to improve the efficiency of the instrument software and hardware. We describe the major design characteristics of the instrument including the system requirements and the technical strategy to meet them. We also present the instrumental performance test results derived from the commissioning runs at the McDonald Observatory.

  • PDF

Modeling on Structural Control of a Laminated Composite Plate with Piezoelectric Sensor/Actuators (압전재료를 이용한 복합적층판의 구조제어에 관한 모델링)

  • 황우석;황운봉;한경섭;박현철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.90-100
    • /
    • 1993
  • A finite element formulation of vibration control of a laminated plate with piezoelectric sensor/ actuators is presented. Classical lamination theory with the induced strain actuation and Hamilton's principle are used to formulate the equations of motion of the system. The total charge developed on the sensor layer is calculated from the direct piezoelectric equation. The equations of motion and the total charge are discretized with 4 node, 12 degrees of freedom quadrilateral plate bending elements with one electrical degree of freedom. The mass and stiffness of the piezoelectric layer are introduced by treating them as another layer in laminated plate. Piezoelectric sensor/actuators are distributed, but discrete due to the geometry of electrodes. By defining an i.d. number of electrode for each element, modelling of electrodes with variable geometry can be achieved. The static response of a piezoelectric bimorph beam to electrical loading and sensor voltage to given displacement are calculated. For a laminated plate under the negative velocity feedback control, the direct time response by the Newmark-.betha. method and damped frequencies and modal damping ratios by modal state space analysis are derived.

Nonlinear Dynamic Analysis of Space Steel Frames (공간 강뼈대 구조물의 비선헝 동적 해석)

  • Kim Seung-Eock;Cuong Ngo-Huu;Lee Dong-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.4 s.70
    • /
    • pp.395-404
    • /
    • 2005
  • This paper presents a reliable numerical procedure for nonlinear time-history analysis of space steel frames subjected to dynamic loads. Geometric nonlinearities of member (P-$\delta$) and frame (P-$\Delta$) are taken into account by the use of stability functions in framed stiffness matrix formulation. The gradual yielding along the member length and over the cross section is included by using a tangent modulus concept and a softening plastic hinge model based on the New-Orbison yield surface. A computer program utilizing the average acceleration method for the integration scheme is developed to numerically solve the equation of motion of framed structure formulated in an incremental form. The results of several numerical examples are compared with those derived from using beam element model of ABAQUS program to illustrate the accuracy and the computational efficiency of the proposed procedure.

Effects of Composite Couplings on Hub Loads of Hingeless Rotor Blade (무힌지 로터 블레이드의 허브하중에 대한 복합재료 연성거동 연구)

  • Lee, Ju-Young;Jung, Sung-Nam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.7
    • /
    • pp.29-36
    • /
    • 2004
  • In this work, the effect of composite couplings on hub loads of a hingeless rotor in forward flight is investigated. The hingeless composite rotor blade is idealized as a laminated thin-walled box-beam. The nonclassical effects such as transverse shear, torsional warping are considered in the structural formulation. The nonlinear differential equations of motion are obtained by applying Hamilton's principle. The blade response and hub loads are calculated using a finite element formulation in space and time. The aerodynamic forces acting on the blade are calculated by quasi-steady strip theory. The theory includes the effects of reversed flow and compressibility. The magnitude of elastic couplings obtained by MSC/NASTRAN is compared with the classical pitch-flap $({\delta}3)$ or $pitch-lag({\alpha}1)$ coupling. It is found that the elastic couplings have a substantial effect on the behavior of $N_b/rev$ hub loads. Nearly 10 to 40% of hub loads is reduced by appropriately tailoring the fiber orientation angles in the laminae of the composite blade.