• Title/Summary/Keyword: Space Weather

Search Result 537, Processing Time 0.027 seconds

SPACE WEATHER RESEARCH BASED ON GROUND GEOMAGNETIC DISTURBANCE DATA (지상지자기변화기록을 이용한 우주천기연구)

  • AHN BYUNG-HO
    • Publications of The Korean Astronomical Society
    • /
    • v.15 no.spc2
    • /
    • pp.1-13
    • /
    • 2000
  • Through the coupling between the near-earth space environment and the polar ionosphere via geomagnetic field lines, the variations occurred in the magnetosphere are transferred to the polar region. According to recent studies, however, the polar ionosphere reacts not only passively to such variations, but also plays active roles in modifying the near-earth space environment. So the study of the polar ionosphere in terms of geomagnetic disturbance becomes one of the major elements in space weather research. Although it is an indirect method, ground magnetic disturbance data can be used in estimating the ionospheric current distribution. By employing a realistic ionospheric conductivity model, it is further possible to obtain the distributions of electric potential, field-aligned current, Joule heating rate and energy injection rate associated with precipitating auroral particles and their energy spectra in a global scale with a high time resolution. Considering that the ground magnetic disturbances are recorded simultaneously over the entire polar region wherever magnetic station is located, we are able to separate temporal disturbances from spatial ones. On the other hand, satellite measurements are indispensible in the space weather research, since they provide us with in situ measurements. Unfortunately it is not easy to separate temporal variations from spatial ones specifically measured by a single satellite. To demonstrate the usefulness of ground magnetic disturbance data in space weather research, various ionospheric quantities are calculated through the KRM method, one of the magneto gram inversion methods. In particular, we attempt to show how these quantities depend on the ionospheric conductivity model employed.

  • PDF

Automatic real-time system of the global 3-D MHD model: Description and initial tests

  • Park, Geun-Seok;Choi, Seong-Hwan;Cho, Il-Hyun;Baek, Ji-Hye;Park, Kyung-Sun;Cho, Kyung-Suk;Choe, Gwang-Son
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.26.2-26.2
    • /
    • 2009
  • The Solar and Space Weather Research Group (SOS) in Korea Astronomy and Space Science Institute (KASI) is constructing the Space Weather Prediction Center since 2007. As a part of the project, we are developing automatic real-time system of the global 3-D magnetohydrodynamics (MHD) simulation. The MHD simulation model of earth's magnetosphere is designed as modified leap-frog scheme by T. Ogino, and it was parallelized by using message passing interface (MPI). Our work focuses on the automatic processing about simulation of 3-D MHD model and visualization of the simulation results. We used PC cluster to compute, and virtual reality modeling language (VRML) file format to visualize the MHD simulation. The system can show the variation of earth's magnetosphere by the solar wind in quasi real time. For data assimilation we used four parameters from ACE data; density, pressure, velocity of solar wind, and z component of interplanetary magnetic field (IMF). In this paper, we performed some initial tests and made a animation. The automatic real-time system will be valuable tool to understand the configuration of the solar-terrestrial environment for space weather research.

  • PDF

Construction of Korea Space Weather Prediction Center: VHF Coherent Scatter Radar

  • Hwang, Jung-A;Kwak, Young-Sil;Cho, Kyung-Suk;Kim, Khan-Hyuk;Park, Young-Deuk
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.32.4-33
    • /
    • 2008
  • Korea space weather prediction center (KSWPC) in Korea Astronomy and Space Science Institute (KASI) has been constructing several facilities to observe mid- to low-latitude upper atmospheric/ionospheric phenomena; VHF coherent scattering radar, All-sky Imager, and Scintmon. Those new ionospheric facilities can be integrated to produce more reliable space weather forecast and nowcast with the existing facilities; Solar Flare Telescope (SOFT), Solar Optical Observatory's sunspot telescope and solar imaging spectrograph, and Magnetometer. The specification of KASI VHF coherent scattering radar is 40.8 MHz of target frequency, 200 kHz of bandwidth, 24 kW of peak power. The science goal of this radar is to measure the irregularities in E- and F-layers over Korea, especially sporadic-E, spread-F, and traveling ionospheric disturbance (TID). The radar will be installed at Gyerong in a territory of Korean Air force by early 2009.

  • PDF

A Formula for Calculating Dst Injection Rate from Solar Wind Parameters

  • Marubashi, K.;Kim, K.H.;Cho, K.S.;Rho, S.L.;Park, Y.D.
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.36.3-37
    • /
    • 2009
  • This is an attempt to improve a formula to predict variations of geomagnetic storm indices (Dst) from solar wind parameters. A formula which is most widely accepted was given by Burton et al. (1975) over 30 years ago. Their formula is: dDst*/dt = Q(t) - Dst*(t)/$\tau$, where Q(t) is the Dst injection rate given by the convolution of dawn-to-dusk electric field generated by southward solar wind magnetic field and some response function. However, they did not clearly specify the response function. As a result, misunderstanding seems to be prevailing that the injection rate is proportional to the dawn-to-dusk electric field. In this study we tried to determine the response function by examining 12 intense geomagnetic storms with minimum Dst < -200 nT for which solar wind data are available. The method is as follows. First we assume the form of response function that is specified by several time constants, so that we can calculate the injection rate Q1(t) from the solar wind data. On the other hand, Burton et al. expression provide the observed injection rate Q2(t) = dDst*/dt + Dst*(t)/$\tau$. Thus, it is possible to determine the time constants of response function by a least-squares method to minimize the difference between Q1(t) and Q2(t). We have found this simple method successful enough to reproduce the observed Dst variations from the corresponding solar wind data. The present result provides a scheme to predict the development of Dst 30 minutes to 1 hour in advance by using the real time solar wind data from the ACE spacecraft.

  • PDF

Neutron Monitor as a New Instrument for KSWPC

  • Oh, Su-Yeon;Yi, Yu;Kim, Yong-Kyun;Bieber, John W;Cho, Kyung-Seok
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.34.1-34.1
    • /
    • 2008
  • Cosmic ray (CR)s are energetic particles that are found in space and filter through our atmosphere. They are classified with galactic cosmic ray (GCR)s and solar cosmic ray (SCR)s from their origins. The process of a CR particle colliding with particles in our atmosphere and disintegrating into smaller pions, muons, neutrons, and the like, is called a cosmic ray shower. These particles can be measured on the Earth's surface by neutron monitor (NM)s. Regarding with the space weather, there are common types of short term variation called a Forbush decrease (FD) and a Ground Level Enhancement (GLE). In this talk, we will briefly introduce our recent studies on CRs observed by NM: (1) simultaneity of FD depending on solar wind interaction, (2) an association between GLE and solar proton events, and (3) diurnal variation of the GCR depending on geomagnetic cutoff rigidity. NM will provide a crucial information for the Korea Space Weather Prediction Center (KSWPC).

  • PDF

Space Weather Effects on GEO Satellite Anomalies during 1997-2009

  • Choi, Ho-Sung;Lee, Jae-Jin;Cho, Kyung-Suk;Cho, Il-Hyun;Park, Young-Deuk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.30.2-30.2
    • /
    • 2010
  • Numerous operational anomalies and satellite failures have been reported since the beginnings of the "space age". Space weather effects on modern spacecraft systems have been emphasized more and more as increasing their complexity and capability. Energetic particles potentially can destroy and degrade electronic components in satellites. We analyzed the geostationary (GEO) satellite anomalies during 1997-2009 to search possible influences of space weather on the satellite anomalies like power problem, control processor problem, attitude control problem, etc. For this we use particle data from GOES and LANL satellites to investigate space weather effects on the GEO satellites' anomalies depending on Kp index, local time, seasonal variation, and high-energy electron contribution. As results, we obtained following results: (1) there is a good correlation between geomagnetic index(Kp) and anomaly occurrences of the GEO satellite; (2) especially during the solar minimum, occurrence of the satellite anomalies are related to electron flux increase due to high speed solar wind; (3) satellite anomalies occurred more preferentially in the midnight and dawn sector than noon and dusk sector; (4) and the anomalies occurred twice more in Spring and Fall than Summer and Winter; (5) the electron with the lowest energy channel (50-75keV) has the highest correlation (cc=0.758) with the anomalies. High association between the anomalies and the low energy electrons could be understand by the facts that electron fluxes in the spring and fall are stronger than those in the summer and winter, and low-energy electron flux is more concentrated in the dawn sector where the GEO satellite anomalies occurred more frequently than high-energy electron flux. While we could not identify what cause such local time dependences, our results shows that low-energy electrons (~100keV) could be main source of the satellite anomaly, which should be carefully taken into account of operating satellites.

  • PDF

A Simplified Visual Simulation of Urban Space in Consideration with Weather and Sunlight

  • Kato, Rie;Makino, Mitsunori
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.1076-1079
    • /
    • 2000
  • In this paper, a simplified visualization method is proposed for an urban space in consideration of weather and sun moving. In the proposed method, buildings and roads with shadows are visualized by the ray tracing algorithm. Also sky, snow, and rain are visualized by textures. Some textures such as snow and rain are generated in advance by the ray casting algorithm. Then we can obtain images with weather condition and shadows of sunlight by buildings along the road in relatively low computational cost

  • PDF

RBSP (Radiation Belt Storm Probes) Mission, Space weather and Science Topics

  • Lee, Jae-Jin;Kim, Kyung-Chan;Hwang, Jung-A;Kim, Yeon-Han;Park, Young-Deuk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.89.2-89.2
    • /
    • 2012
  • Radiation Belt, discovered by Van Allen in 1958, is a region energetic particles are trapped by the Earth's magnetic field. To measure charged particles and fields in the radiation belt, RBSP(Radiation Belt Storm Probes) mission will be launched in September 2012 by NASA. RBSP mission consists of two spacecraft having orbit from 600 km to 30,000 km and rotates the Earth twice a day. This mission is not designed just for scientific purpose but have operational function broadcasting real time data for space weather monitoring. As a program of KASI-NASA cooperation, KASI is constructing RBSP data receiving antenna that will be installed by April in Daejeon. With this antenna system, NASA can receive RBSP data for 24 hours and KASI also get space weather information to protect Korean GEO satellites. In this presentation, we will discuss how we use RBSP data for space weather forecasting. In addition, we will talk about science topics that can be achieved by RBSP mission. Especially we focus on the dusk-side electron precipitation that has been considered as a main mechanism of electron dropout events. We show the dusk-side precipitation is closely associated with radiation belt electron loss with NOAA-POES data, and why RBSP mission is important to understand radiation belt physics.

  • PDF