• Title/Summary/Keyword: Space Simulation

Search Result 4,350, Processing Time 0.046 seconds

Simulation of a solar eruption with a background solar wind

  • Lee, Hwanhee;Magara, Tetsuya;Kang, Jihye;Inoue, Satoshi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.46.3-47
    • /
    • 2016
  • We construct a solar eruption model with a background solar wind by performing three-dimensional zero-beta magnetohydrodynamic (MHD) simulation. The initial configuration of a magnetic field is given by nonlinear force-free field (NLFFF) reconstruction applied to a flux emergence simulation. The background solar wind is driven by upflows imposed at the top boundary. We analyzed the temporal development of the Lorentz force at the flux tube axis. Based on the results, we demonstrate that a solar eruption is caused by the imbalance between magnetic pressure gradient force and magnetic tension force. We conclude that this imbalance is produced by a weak but continuously existing solar wind above an active region.

  • PDF

Development of a Component Based Helicopter Simulation Program (요소 기반의 헬리콥터 시뮬레이션 프로그램 개발)

  • Shin, Jae-Hwa;Choi, Kee-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.6
    • /
    • pp.548-555
    • /
    • 2007
  • Typical helicopter simulation programs rely on differential equations of a closed form. However, since these equations are derived using various assumptions, their usefulness is limited to small flight regions and specific model types. This paper presents a component based rotorcraft simulation program. The program adopts methods of multi-body dynamics and is written in an object-oriented programming language. The program was validated using an AH-1G helicopter simulation. The trim results are well matched with flight test data. It is also shown that program is capable of running in real-time on a desktop computer.

A Systematic Construction Process of 3D Database for Realtime Virtual Simulation of Transportation Equipments (수송장비의 실시간 가상 시뮬레이션을 위한 3차원 데이터베이스의 체계적인 구축 프로세스)

  • Kim, Bo-Hyun
    • IE interfaces
    • /
    • v.16 no.2
    • /
    • pp.258-267
    • /
    • 2003
  • Recently, virtual reality technologies have been rapidly developed and realtime virtual simulation methods have been extensively employed for several application areas such as game, sports, manufacturing, military, and so on. A 3D database in realtime virtual simulation plays a key role because it makes users feel reality in virtual space. In a application view of 3D database, a systematic construction approach is required to reduce its construction time and increase its quality. However, many researches have been mostly focused on realtime graphic issues and its key technologies. In virtual simulation of transportation equipments, this paper proposes a systematic construction process of 3D database consisting of four stages as follows: 1) determine the activity space of a equipment, 2) collect data related to 3D database construction, 3) make a 3-dimensional modeling strategy, and 4) generate and evaluate a 3D model. This paper also introduces a new procedure of 3D environment modeling, which summarizes and expands our modeling experiences, to be used as a modeling guide.

Analysis on Effectiveness for HOV lane using Intergration Simulation (Intergration 시뮬레이션을 이용한 HOV전용차로 효과 분석)

  • Hong Sung-ho;Kim Jin-woo;Ki Yong-kul
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2005.11a
    • /
    • pp.125-129
    • /
    • 2005
  • As metropolitan areas are rapidly growing in both population and physical size, so too has the problem of traffic congestion. Magnifying this is the limited financial resources and lack of road corridor space available to juggle the many competing demands. High Occupancy Vehicle (HOV) facilities have been implemented in an attempt to alleviate the problem of growing congestion while considering the issue of limited funding and lack of physical space. HOV lanes may increase the efficiency of a road corridor by maximising its person carrying capacity. These facilities are meant to provide priority treatment to HOVs, thereby luring people to choose a transport mode with a higher occupancy than the single occupant vehicle (SOV), such as buses or carpools. This paper analyze the issues surrounding HOV lanes, their effect, problems and their evaluation by using Intergration, that is Traffic Simulation Software, when HOV lanes be implemented in the Olympic Highway.

  • PDF

A Study on the TCAD Simulation to Predict the Latchup Immunity of High Energy Ion Implanted CMOS Twin Well Structures (고 에너지 이온 주입된 CMOS 쌍 우물 구조의 레치업 면역성 예측을 위한 TCAD 모의실험 연구)

  • 송한정;김종민;곽계달
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.2
    • /
    • pp.106-113
    • /
    • 2000
  • This study describes how a properly calibrated simulation method could be used to investigate the latchup immunity characteristics among the various high energy ion implanted CMOS twin well (retro-grade/BILLI/BL) structures. To obtain the accurate quantitative simulation analysis of retrograde well, a global tuning procedure and a set of grid specifications for simulation accuracy and computational efficiency are carried out. The latchup characteristics of BILLI and BL structures are well predicted by applying a calibrated simulation method for retrograde well. By exploring the potential contour, current flow lines, and electron/hole current densities at the holding condition, we have observed that the holding voltage of BL structure is more sensitive to the well design rule (p+to well edge space /n +to well edge space) than to the retrograde well itself.

  • PDF

A Study on Flight Simulation Based on HLA-RTI (HLA-RTI에 기반 한 비행시뮬레이션에 관한 연구)

  • Hyun, Se-Woong;Yoon, Sug-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.6
    • /
    • pp.602-608
    • /
    • 2009
  • The HLA system architecture, prescribed in IEEE-1516, is a core fundamental technology to build a complex simulation network system which is composed of a number of individual simulation developed for different purposes. The model structure of flight simulation with expansibility and compatability was suggested in this thesis by showing how to implement HLA to a commercial flight simulation software and how the system implemented with HLA to work. In addition, it was judged whether real-time can be guaranteed implementing to a simulation system with integrity through analysis of flight information data collected by comparing real-time simulation based on HLA with commercial flight simulation.

Mutual Verification of an Analytic Model of a Complex System and Space Syntax Using Network Analyses (네트워크 분석방식 선택에 따른 복잡계 모형과 공간구문론의 상호검증)

  • Kim, Suk-Tae;Yoon, So-hee
    • Korean Institute of Interior Design Journal
    • /
    • v.26 no.3
    • /
    • pp.45-54
    • /
    • 2017
  • A social phenomenon that occurs in a physical space is said to be a complex system. However, space syntax, which is commonly employed by researchers to identify such social phenomena, has various limitations in interpreting their complexity. On the other hand, agent-based modeling considers a variety of factors including the personality of the agent, objective-oriented work flows, estimation according to time flows and better prediction of space use through diverse parameters depending the situation, as well as the characteristics of the space. The agent-based method thus has the potentials to be developed as an alternative to space syntax techniques. In particular, discrete event driven simulation(DEVS), which is part of the agent-based modeling method, embraces the concept of networks just like space syntax, which allows a possible theoretical linkage in the future. This study suggests a procedural model of agent-based DEVS reflecting two different connection methods, i.e. connections between adjacent areas and those of the entire space, and attempts to identify the relationship between the local and regional indices of space syntax. A number of spaces were selected as examples-one for a preliminary experiment and eight modified for the main experiment-and space syntax and DEVS were applied to each of them. The comparative analysis of the results led to the conclusions as follows: 1) Adjacent connections were closely related to local indices, while the whole-space approach to regional indices. Local integration shows both characteristics. 2) Observation of the time flow model indicated a faster convergence with the range of 1 to 3-fold of the total time of one lap, with the error of less than 10%. 3) The heat map analysis showed more obvious characteristics of using the space for the entire space rather than adjacent connections. 4) Space syntax shows higher eligibility than ABM.

Analysis of Aerodynamic Noise at Inter-coach Space of High Speed Trains

  • Kim, Tae-Min;Kim, Jung-Soo
    • International Journal of Railway
    • /
    • v.7 no.4
    • /
    • pp.100-108
    • /
    • 2014
  • A numerical analysis method for predicting aerodynamic noise at inter-coach space of high-speed trains, validated by wind-tunnel experiments for limited speed range, is proposed. The wind-tunnel testing measurements of the train aerodynamic sound pressure level for the new generation Korean high-speed train have suggested that the inter-coach space aerodynamic noise varies approximately to the 7.7th power of the train speed. The observed high sensitivity serves as a motivation for the present investigation on elucidating the characteristics of noise emission at inter-coach space. As train speed increases, the effect of turbulent flows and vortex shedding is amplified, with concomitant increase in the aerodynamic noise. The turbulent flow field analysis demonstrates that vortex formation indeed causes generation of aerodynamic sound. For validation, numerical simulation and wind tunnel measurements are performed under identical conditions. The results show close correlation between the numerically derived and measured values, and with some adjustment, the results are found to be in good agreement. Thus validated, the numerical analysis procedure is applied to predict the aerodynamic noise level at inter-coach space. As the train gains speed, numerical simulation predicts increase in the overall aerodynamic sound emission level accompanied by an upward shift in the main frequency components of the sound. A contour mapping of the aerodynamic sound for the region enclosing the inter-coach space is presented.

Optimization of Space Debris Collision Avoidance Maneuver for Formation Flying Satellites

  • Seong, Jae-Dong;Kim, Hae-Dong
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.291-298
    • /
    • 2013
  • The concept of the satellite formation flight is area where it is actively study with expandability and safety compare to existing satellite. For execution of duty with more safety issue, it needs to consider hot topic of space debris for operation of formation flight. In this paper, it suggests heuristic algorithm to have avoidance maneuver for space debris towards operating flight formation. Indeed it covers, using common software, operating simulation to nearest space environment and not only to have goal of avoidance but also minimizing the usage of fuel and finding optimization for maximizing cycle of formation flight. For improvement on convergence speed of existing heuristic algorithm, it substitute to hybrid heuristic algorithm, PSOGSA, and the result of simulation, it represents the satisfaction of minimum range for successful avoidance maneuver and compare to not using avoidance maneuver, it keeps more than three times of formation maintenance performance. From these, it is meaningful results of showing several success goals like simple avoidance collision and fuel usage and decreasing number of times of maintaining formation maneuver.