• 제목/요약/키워드: Space Energy

검색결과 3,262건 처리시간 0.029초

AN OPERATOR VALUED FUNCTION SPACE INTEGRAL OF FUNCTIONALS INVOLVING DOUBLE INTEGRALS

  • Kim, Jin-Bong;Ryu, Kun-Sik
    • 대한수학회논문집
    • /
    • 제12권2호
    • /
    • pp.293-303
    • /
    • 1997
  • The existence theorem for the operator valued function space integral has been studied, when the wave function was in $L_1(R)$ class and the potential energy function was represented as a double integra [4]. Johnson and Lapidus established the existence theorem for the operator valued function space integral, when the wave function was in $L_2(R)$ class and the potential energy function was represented as an integral involving a Borel measure [9]. In this paper, we establish the existence theorem for the operator valued function we establish the existence theorem for the operator valued function space integral as an operator from $L_1(R)$ to $L_\infty(R)$ for certain potential energy functions which involve double integrals with some Borel measures.

  • PDF

Improved optical design and performances of Amon-Ra instrument energy channel

  • Seong, Se-Hyun;Hong, Jin-Suk;Ryu, Dong-Ok;Park, Won-Hyun;Lee, Han-Shin;Kim, Sug-Whan
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2010년도 한국우주과학회보 제19권1호
    • /
    • pp.26.1-26.1
    • /
    • 2010
  • In this report, we present newly improved optical design for the Amon-Ra energy channel and its optical performance. The design is optimized parametrically with emphasis on improved light concentration. And then its performances are computed, first, from a laboratory test simulation using laser method (wave optics approach) and, second, from an in-orbit radiative transfer simulation using IRT method with 3D Earth model (geometrical optics approach). Two simulation test results show clear evidence of energy concentration improvement.

  • PDF

IFC 데이터의 건물에너지 성능평가를 위한 공간경계정보 호환성 향상 연구 (A Study on the Space Boundary Information Interoperability Improvement of IFC Data for Building Energy Performance Assessment)

  • 최중식;김인한
    • 한국CDE학회논문집
    • /
    • 제19권2호
    • /
    • pp.129-137
    • /
    • 2014
  • Due to the increase of carbon dioxide and building regulations, BIM is considered a way of low-carbon and eco-friendly building development for its many advantages. The advantages can be maximized with Open BIM since it can produce optimal results for various purposes of energy performance assessment. However there are some problems in data interoperability in the process of Open-BIM based energy performance assessment. To solve such problems, this study focuses on space boundary information interoperability between IFC of Open BIM and IDF format of Energy Plus known as the most accurate and diverse energy performance assessment. The study analyzes the analogous study then figures out the problems of IFC based energy performance analysis, and suggests the way of interoperability. Finally, the development of automation program makes this way much more effective. The study of IFC data interoperability is useful for improving the reliability of Open-BIM based energy assessment.

Electron Microburst Energy Dispersion Calculated by Test Particle Simulation

  • Lee, Jae-Jin;Kim, Yeon-Han;Park, Young-Deuk
    • 천문학회보
    • /
    • 제36권2호
    • /
    • pp.94.2-94.2
    • /
    • 2011
  • Electron microbursts, energetic electron precipitation having duration less than 1 sec, have been thought to be generated by chorus wave and electron interactions. While the coincidence of chorus and microburst occurrence supports the wave-particle interaction theory, more crucial evidences have not been observed to explain the origin of microbursts. We propose the measurement of energy dispersion of microbursts could be an evidence supporting wave-particle theory. During chorus waves propagate along magnetic field, the resonance condition should be satisfied at different magnetic latitude for different energy electrons. If we observed electron microbursts at low altitude, the arrival time of different energy electrons should make unique dispersion structures. In order to observe such energy dispersion, we need a detector having fast time resolution and wide energy range. Our study is motivated from defining the time resolution and energy range of the detectors required to measure microburst energy dispersions. We performed test particles simulation to investigate how electrons interact with simple coherent waves like chorus waves. We compute a large number of electron's trajectories and successfully produce energy dispersion structures expected when microbursts are observed with 10 msec time resolution detectors at the altitude of 600 km. These results provide useful information in designing electron detectors for the future mission.

  • PDF

THREE-DIMENSIONAL CRYSTALLIZING ${\pi}-BONDINGS,\;{\pi}-FAR$ INFRARED RAYS AND N-MACHINE

  • Oh, Hung-Kuk
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 1996년도 추계학술발표회 논문집
    • /
    • pp.34-44
    • /
    • 1996
  • N-machine produces more than input energy at above 3000 rpm. any space energy is absorbed when the N-machine is rotating at a very high velocity. Laws of electromagnetics verify that normal conduction is due to that electrons moves from one three-dimensional crystallizing ${\pi}-bonding$ orbital to next. The ${\pi}-far$ infrared rays are generated from the resonance and rotation of the electrons on the orbitals of three-dimensional crystallizing ${\pi}-bonding$ atoms. Material in universe is composed of ${\pi}-rays$, which have alternative outward electric field. If the alternative outward electric fields of the ${\pi}-rays$ are resonant each other they make attraction force, which is the gravity. The collection of space energy is due to a attraction force between the radially alternating electric field and the ${\pi}-far$ infrared rays in the space. Electrons flow by absorbed density difference of ${\pi}-far$ infrared rays along a conduction wire, which also verifies that normal electron conduction is due to a flow from one three-dimensional crystallizing ${\pi}-bonding$ orbital to next.

  • PDF

MHD turbulence in expanding/collapsing media

  • Park, Jun-Seong;Ryu, Dong-Su;Cho, Jung-Yeon
    • 천문학회보
    • /
    • 제35권2호
    • /
    • pp.74.2-74.2
    • /
    • 2010
  • We investigate driven magnetohydrodynamic (MHD) turbulence by including the effects of expansion and collapse of background medium. The main goal is to quantify the evolution and saturation of strength and characteristic lengths of magnetic fields in expanding and collapsing media. Our findings are as follows. First, with expansion and collapse of background medium, the magnetic energy density per comoving volume does not saturate; either it keeps decreasing or increasing with time. The magnetic energy density relative to the kinetic energy density strongly depends on the expanding or collapsing rate. Second, at scales close to the energy injection (or driving) scale, the slope of magnetic field power spectrum shallows with expansion but steepens with collapse. Third, various characteristic lengths, relative to the energy injection scale, decrease with expansion but increase with collapse. We discuss the astrophysical implications of our findings.

  • PDF

주기 함수에 의한 지중 온도의 예측 방법에 관한 연구 (A Study on the Method to Predict Underground Temperature by Periodic Function)

  • 정수일;박효순;장문석
    • 한국태양에너지학회 논문집
    • /
    • 제21권1호
    • /
    • pp.51-60
    • /
    • 2001
  • Underground space gives two benifits to us. First, it helps us to solve the land scarcity problem in urban city. Second it also helps us to manage the thermal properties of underground to keep cool in summer and warm in winter. How much it save energy depends on the ability to predict the exact temperature of the space. The purpose of this paper is to make a function predicting the temperature of underground space, analysing the 20 years measures of underground temperature kept in Korea Central Weather Burea.

  • PDF

유비쿼터스 지능 공간에서의 지수 기반 상황인지 에너지경영 시스템 (An Index-Based Context-Aware Energy Management System in Ubiquitous Smart Space)

  • 권오병;이연님
    • 지식경영연구
    • /
    • 제9권4호
    • /
    • pp.51-63
    • /
    • 2008
  • Effective energy consumption now becomes one of the area of knowledge management which potentially gives global impact. It is considerable for the energy management to optimize the usage of energy, rather than decreasing energy consumption at any cases. To resolve these challenges, an intelligent and personalized system which helps the individuals control their own behaviors in an optimal and timely manner is needed. So far, however, since the legacy energy management systems are nation-wide or organizational, individual-level energy management is nearly impossible. Moreover, most estimating methods of energy consumption are based on forecasting techniques which tend to risky or analysis models which may not be provided in a timely manner. Hence, the purpose of this paper is to propose a novel individual-level energy management system which aims to realize timely and personalized energy management based on context-aware computing approach. To do so, an index model for energy consumption is proposed with a corresponding service framework.

  • PDF

3차원 수직·수평 건축공간분석을 위한 ERAM모델의 보행에너지 가중치 산정 연구 (The Method to Calculate the Walking Energy-Weight in ERAM Model to Analyze the 3D Vertical and Horizontal Spaces in a Building)

  • 최성필;최재필
    • 대한건축학회논문집:계획계
    • /
    • 제34권6호
    • /
    • pp.3-14
    • /
    • 2018
  • The aim of this study is to propose a method for calculating the weight of walking energy in ERAM model by calculating it for the analysis of vertical and horizontal spaces in a building. Conventional theories on the space analysis in the field of architectural planning predict the pedestrian volume of network spaces in urban street or in two-dimensional plane within a building, however, for vertical and horizontal spaces in a building, estimates of the pedestrian volume by those theories are limited. Because in the spatial syntax and ERAM model have been applied weights such as the spatial depth, adjacent angles, and physical distances available only to the two-dimensional same layer or plane. Therefore, the following basic assumptions and analysis conditions in this study were established for deriving a predictor of pedestrian volume in vertical and horizontal spaces of a building. The basic premise of space analysis is not to address the relationship between the pedestrian volume and the spatial structure itself but to the properties of spatial structure connection that human beings experience. The analysis conditions in three-dimensional spaces are as follows : 1) Measurement units should be standardized on the same scale, and 2) The connection characteristics between spaces should influence the accessibility of human beings. In this regard, a factor of walking energy has the attributes to analyze the connection of vertical and horizontal spaces and satisfies the analysis conditions presented in this study. This study has two implications. First, this study has shown how to quantitatively calculate the walking energy after a factor of walking energy was derived to predict the pedestrian volume in vertical and horizontal spaces. Second, the method of calculating the walking energy can be applied to the weights of the ERAM model, which provided the theoretical basis for future studies to predict the pedestrian volume of vertical and horizontal spaces in a building.

Short-duration Electron Precipitation Studied by Test Particle Simulation

  • Lee, Jaejin;Kim, Kyung-Chan;Lee, Jong-Gil
    • Journal of Astronomy and Space Sciences
    • /
    • 제32권4호
    • /
    • pp.317-325
    • /
    • 2015
  • Energy spectra of electron microbursts from 170 keV to 340 keV have been measured by the solid-state detectors aboard the low-altitude (680 km) polar-orbiting Korean STSAT-1 (Science and Technology SATellite). These measurements have revealed two important characteristics unique to the microbursts: (1) They are produced by a fast-loss cone-filling process in which the interaction time for pitch-angle scattering is less than 50 ms and (2) The e-folding energy of the perpendicular component is larger than that of the parallel component, and the loss cone is not completely filled by electrons. To understand how wave-particle interactions could generate microbursts, we performed a test particle simulation and investigated how the waves scattered electron pitch angles within the timescale required for microburst precipitation. The application of rising-frequency whistler-mode waves to electrons of different energies moving in a dipole magnetic field showed that chorus magnetic wave fields, rather than electric fields, were the main cause of microburst events, which implied that microbursts could be produced by a quasi-adiabatic process. In addition, the simulation results showed that high-energy electrons could resonate with chorus waves at high magnetic latitudes where the loss cone was larger, which might explain the decreased e-folding energy of precipitated microbursts compared to that of trapped electrons.