• 제목/요약/키워드: Source and Impact Area

검색결과 205건 처리시간 0.028초

겨울철 대관령지역 지형성 구름에 대한 지상기반 구름씨뿌리기 영향 사례연구 (A Case Study on the Impact of Ground-based Glaciogenic Seeding on Winter Orographic Clouds at Daegwallyeong)

  • 양하영;채상희;정진임;서성규;박영산;김백조
    • 한국지구과학회지
    • /
    • 제36권4호
    • /
    • pp.301-314
    • /
    • 2015
  • 본 연구에서는 겨울철 대관령지역의 지형성 구름에 대해 인공증설을 위한 구름씨뿌리기(이하 시딩) 영향을 알아보기 위해서 2013년 3월 13일 실험사례를 분석하였다. 지상연소기를 이용하여 기온 $-4^{\circ}C$ 이하, 풍향 $45-130^{\circ}$, 풍속 $5ms^{-1}$ 이하일 때 AgI 입자를 시딩 하였으며 대관령지역에서 적절한 시딩량을 알아보기 위해 $38gh^{-1}$ (SR1)과 $113gh^{-1}$ (SR2)에 대해 실험을 수행하였다. AgI point-source 모듈을 추가한 WRF (Weather Research and Forecast) 수치모의실험을 통해 시딩 물질의 확산장을 알아보았다. 수치모의 결과 과냉각수적이 충분히 존재한 상태에서 실험이 실시되었으며 시딩 물질은 주풍에 따라 이동하는 경향을 보였다. 시딩 효과를 알아보기 위해 안개입자측정기, 강수입자측정기와 광학우적계에서 관측된 자료를 분석하였다. 본 연구사례에서는 빙정핵 시딩에 의해 1 mm 이하 크기의 강수입자 수농도의 증가가 나타났으며 대관령지역에는 SR1 시딩이 더 적절하다고 판단된다.

식생이 조성된 LID 시설의 효율 평가 (Assessment of Performances of Low Impact Development (LID) Facilities with Vegetation)

  • 홍정선;김이형
    • Ecology and Resilient Infrastructure
    • /
    • 제3권2호
    • /
    • pp.100-109
    • /
    • 2016
  • 도시 지역의 물순환 구축과 비점오염물질 저감을 위해 구축되는 LID 시설의 지속적 효율은 주요 내부 구성요소(식물, 토양, 여재, 미생물 등)의 최적화된 상호작용에 의하여 나타난다. 본 연구는 식생이 조성된 4가지 LID 기술 (식생체류지, 소규모 인공습지, 빗물정원 및 나무여과상자)의 실제 도시 강우유출수의 유입으로 인한 식물의 성장상태 변화와 물순환 효과 및 비점오염물질 저감능력을 평가하기 위하여 수행되었다. 도시지역의 강우유출수의 약 40% 이상의 유출저감을 위한 적정 SA/CA (facility surface area / catchment area) 비는 시설마다 차이는 있지만 1~5% 범위가 적당한 것으로 평가되었다. 강우시 LID 시설에서의 유출저감은 비점오염물질 저감효율 향상에 중요한 영향을 끼치는 기작으로 나타났으며, SA/CA는 LID 시설의 중요한 설계인자로 도출되었다. 유출저감에 효과적인 시설은 빗물정원 > 나무여과상자 > 식생체류지 > 소규모 인공습지 순으로 나타났으며 입자상 물질 (TSS)의 제거능력은 빗물정원 > 나무여과상자 > 소규모 인공습지 > 식생체류지 순으로 분석되었다. 유기물 (COD, TOC), 영양물질 (TN, TP) 및 중금속 (Cu, Pb, Cd, Zn) 제거에는 빗물정원 > 나무여과상자 > 식생체류지 > 소규모 인공습지 순으로 조사되었으며 이러한 결과들은 향후 도시지역의 물순환 구축 및 비점오염물 제거에 적용되는 LID 시설의 설계에 중요한 자료로 활용 가능할 것으로 판단된다.

강우에 따른 거제만해역 육상오염원의 영향평가 (Evaluation of the Influence of Inland Pollution Sources on Shellfish Growing Areas after Rainfall Events in Geoje Bay, Korea)

  • 하광수;유현덕;심길보;김지회;이태식;김풍호;주자연;이희정
    • 한국수산과학회지
    • /
    • 제44권6호
    • /
    • pp.612-621
    • /
    • 2011
  • The influences of inland pollution sources because of rainfall events on the bacteriological water quality in Geoje Bay, a major shellfish production area in Korea, were investigated. The sanitary status of sea water and shellfish after rainfall events was also evaluated. The flow rates of 13 streams around Geoje Bay showed 6 to 7-fold increases after 15 to 21 mm of rainfall. Peak pollution was observed in the Naegan Stream, the Gandeok Stream and the Seojeong Stream. The calculated impact area of inland pollution sources was 3.1 $km^2$ immediately after 15 mm of rainfall and expanded to 3.5 $km^2$ after 24 hours. These calculations of impacted area matched results from fecal coliform analyses with sea water. The distance between the major pollution source in the bay (the Gandeok Stream) and the station with the worst bacteriological water quality immediately after 15 mm of rainfall, which was below the Korean standard, was 0.8 km in a straight line; this distance increased to 2.0 km after a period of 24 hours. The area impacted by inland pollution sources after a 15 mm rainfall event was wider than after a 21 mm rainfall. Although the flow rate from inland pollution sources was higher, the concentration of fecal coliform in the discharged water was lower after higher rainfall events. These observations corresponded with the results of fecal coliform analyses with sea water samples. According to the evaluation of the influences of inland pollution sources and fecal coliform analyses on sea water and shellfish samples in Geoje Bay, pollutants from inland sources did not reach the boundary line of the shellfish growing area after rainfall events of 15 or 22 mm. The bacteriological water quality of the shellfish growing area in Geoje Bay met the Korean standard and US NSSP requirements for approved shellfish growing areas.

서울시 지하철 승강장의 스크린도어 설치 전·후 PM10 오염원의 기여도 비교 연구 (A Comparative Study on PM10 Source Contributions in a Seoul Metropolitan Subway Station Before/After Installing Platform Screen Doors)

  • 이태정;전재식;김신도;김동술
    • 한국대기환경학회지
    • /
    • 제26권5호
    • /
    • pp.543-553
    • /
    • 2010
  • Almost five million citizens a day are using subways as a means of traffic communication in the Seoul metropolitan. As the subway system is typically a closed environment, indoor air pollution problems frequently occurs and passengers complain of mal-health impact. Especially $PM_{10}$ is well known as one of the major pollutants in subway indoor environments. The purpose of this study was to compare the indoor air quality in terms of $PM_{10}$ and to quantitatively compare its source contributions in a Seoul subway platform before and after installing platform screen doors (PSD). $PM_{10}$ samples were collected on the J station platform of Subway Line 7 in Seoul metropolitan area from Jun. 12, 2008 to Jan. 12, 2009. The samples collected on membrane filters using $PM_{10}$ mini-volume portable samplers were then analyzed for trace metals and soluble ions. A total of 18 chemical species (Ba, Mn, Cr, Cd, Si, Fe, Ni, Al, Cu, Pb, Ti, $Na^+$, $NH_4^+$, $K^+$, $Mg^{2+}$, $Ca^{2+}$, $Cl^-$, and ${SO_4}^{2-}$) were analyzed by using an ICP-AES and an IC after performing proper pre-treatments of each sample filter. Based on the chemical information, positive matrix factorization (PMF) model was applied to identify the source of particulate matters. $PM_{10}$ for the station was characterized by three sources such as ferrous related source, soil and road dust related source, and fine secondary aerosol source. After installing PSD, the average $PM_{10}$ concentration was decreased by 20.5% during the study periods. Especially the contribution of the ferrous related source emitted during train service in a tunnel route was decreased from 59.1% to 43.8% since both platform and tunnel areas were completely blocked by screen doors. However, the contribution of the fine secondary aerosol source emitted from various outside combustion activities was increased from 14.8% to 29.9% presumably due to ill-managed ventilation system and confined platform space.

Sustainable Environmental Science & Recycling Technology Education for High School and Middle Schools: Global Scenario

  • Thenepalli, Thriveni;Chilakala, Ramakrsihna;Ahn, Ji Whan
    • 에너지공학
    • /
    • 제28권1호
    • /
    • pp.45-48
    • /
    • 2019
  • Currently, the global atmosphere around the world is altering at a very rapid pace. Among those changes, some are beneficial, but most of the changes are lead to destruction to our planet. The area of environmental science is a significant resource for learning more about these changes. Due to the urbanization, the human population is increasing, natural resources becoming very limited. To solve the limited resources issues, recycling is absolutely an alternative source for the new demands and limitations. Recycling education is very important to raise awareness among students and their communities about the need for recycling and what materials are recyclable locally. In this paper, we reported the role of sustainability science and technology and the impact of recycling research education in the middle schools, both in developing countries and Asian countries and also we included the brief data of global recycling of waste.

준 실시간 화학적 조성자료를 이용한 미세입자 연무 에피소드 규명 (Investigation on a Haze Episode of Fine Particulate Matter using Semi-continuous Chemical Composition Data)

  • 박승식;김선정;공부주;이권호;조석연;김종춘;이석조
    • 한국대기환경학회지
    • /
    • 제29권5호
    • /
    • pp.642-655
    • /
    • 2013
  • In this study, semi-continuous measurements of $PM_{2.5}$ mass, organic and elemental carbon (OC and EC), black carbon (BC), and ionic species concentrations were made for the period of April 03~13, 2012, at a South Area Supersite at Gwangju. Possible sources causing the high concentrations of major chemical species in $PM_{2.5}$ observed during a haze episode were investigated. The measurement results, along with meteorological parameters, gaseous pollutants data, air mass back trajectory analyses and PSCF (potential source contribution function) results, were used to study the haze episode. Substantial enhancements of OC, EC, BC, $K^+$, $SO{_4}^{2-}$, $NO{_3}{^-}$, $NH{_4}{^+}$, and CO concentrations were closely associated with air masses coming from regions of forest fires in southeastern China, suggesting likely an impact of the forest fires. Also the PSCF maps for EC, OC, $SO{_4}^{2-}$, and $K^+$ demonstrate further that the long-range transport of smoke plumes of forest fires detected over the southeastern China could be a possible source of haze phenomena observed at the site. Another possible source leading to haze formation was likely from photochemistry of precursor gases such as volatile organic compounds, $SO_2$, and $NO_2$, resulting in accumulation of secondary organic aerosol, $SO{_4}^{2-}$ and $NO{_3}{^-}$. Throughout the episode, local wind directions were between 200 and $230^{\circ}C$, where two industrial areas are situated, with moderate wind speeds of 3~5 m/s, resulting in highly elevated concentration of $SO_2$ with a maximum of 15 ppb. The $SO{_4}^{2-}$ peak occurring in the afternoon hours coincided with maximum ambient temperature ($24^{\circ}C$) and ozone concentration (~100 ppb), and were driven by photochemistry of $SO_2$. As a result, the pattern of $SO{_4}^{2-}$ variations in relation to wind direction, $SO_2$ and $O_3$ concentrations, and the strong correlation between $SO_2$ and $SO{_4}^{2-}$ ($R^2=0.76$) suggests that in addition to the impact of smoke plumes from forest fires in the southeastern China, local $SO_2$ emissions were likely an important source of $SO{_4}^{2-}$ leading to haze formation at the site.

일출일몰 데이터를 이용한 인간 중심 조명 구현에 관한 연구 (A Study on Implementation of Human Centric Lighting Using Sunrise and Sunset Data)

  • 장두원;김충혁;조규원
    • 한국전기전자재료학회논문지
    • /
    • 제37권5호
    • /
    • pp.486-493
    • /
    • 2024
  • Lighting has been used for a long time as a medium to convey brightness from darkness, and through incandescent lamps and fluorescent lamps, LED light sources have now become the standard in the lighting industry. Recently, the lighting equipment industry has been undergoing rapid digital transformation, starting with smart lighting, and is evolving into smart lighting customized for individuals and spaces through the development of IoT technology, cloud-based services, and data analysis. However, the blue light emitted from digital devices (computers, smartphones, tablets, etc.) or LED lights stimulates the melanopsin in the optic ganglion cells in the retina of the eye, which in turn stimulates the secretion of melatonin through the pineal gland, which regulates the secretion of melatonin. This can reduce sleep quality or disrupt biological rhythms. This interaction between blue light and melatonin has such a significant impact on human sleep patterns and overall health that it is essential to reduce exposure to blue light, especially in the evening. Human-centered lighting refers to lighting that takes into account the effects of light on the physical and mental areas, such as human activity and awakening, improvement of sleep quality, and health management. Many research institutes study the effects in the visible area and the non-visible area. By studying the impact, it is expected to improve the quality of human life. In this study, we plan to study ways to implement human-centered lighting by collecting sunrise and sunset data and linking commercialized LED packages and control devices with open-source hardware.

충주시 초미세먼지 (PM2.5)의 배출원 기여도 추정에 관한 연구 (Source Apportionment of Fine Particulate Matter (PM2.5) in the Chungju City)

  • 강병욱;이학성
    • 한국대기환경학회지
    • /
    • 제31권5호
    • /
    • pp.437-448
    • /
    • 2015
  • The purpose of this study is to present the source contribution of the fine particles ($PM_{2.5}$) in Chungju area using the CMB (chemical mass balance) method throughout the four seasons in Korea. The Chungju's annual average level of $PM_{2.5}$ was $48.2{\mu}g/m^3$, which exceeded two times higher than standard air quality. Among these particles, the soluble ionic compounds represent 54.2% of fine particle mass. Additionally, the OC concentration in Chungju stayed similar to other domestic cities, while the EC concentration decreased significantly compared to other domestic/international cities. The concentration of sulfur represented the highest composition (8%) among the fine particle compounds. According to the CMB results, the general trend of the $PM_{2.5}$ mass contributors was the following: secondary aerosols (50.5%: ammonium sulfate 26.5% and ammonium nitrate 24.0%) > gasoline vehicle (18.3%) > biomass burning (11.0%) > industrial boiler (6.0%) > diesel vehicles (4.4%). The contribution of the secondary aerosols was the main cause than others. This impact is assumed to be emitted from air pollutants of urban cities or neighbor countries such as China.

낙동강 중·하류 지역의 수변 특성에 관한 연구 (Riparian Area Characteristics of the Middle and Lower Reaches of the Nakdong River, Korea)

  • 강대석;성기준;여운상;정용현;이석모
    • 환경영향평가
    • /
    • 제17권3호
    • /
    • pp.189-200
    • /
    • 2008
  • As a transition zone between terrestrial and aquatic ecosystems, riparian areas of rivers and streams play significant roles in production and decomposition for river and stream systems. Understanding of the physical and ecological characteristics of riparian areas are, therefore, important for the management of river and stream systems. It is especially important to understand the characteristics of riparian areas for the Nakdong River in Korea which has a large watershed area and diverse land uses. This study aimed at collecting field data, according to stream types, which are essential for the management of riparian areas of the middle and lower reaches of the Nakdong River, Korea. Most riparian areas surveyed in this study had roads within 100 meters from river edges. Distances from water edge to banks were less than 1m for most riparian areas neighboring agricultural lands, indicating that those areas might be very vulnerable to pollutant inputs from non-point sources. Water quality data indicated that soil erosion in the riparian areas could be a major source of phosphorus input to the Nakdong River and land use patters might have a significant influence on nitrogen concentration in the river. Heavy metal concentrations in soils of the riparian areas of the river were below soil quality standards, except arsenic and chromium. Vegetation surveys showed that therophytes were the most frequently occurred riparian plants in the Nakdong River. Number of aquatic plant species increased downstream, with the most diverse aquatic plants observed in wetlands and irrigation canals of the West Nakdong River. Occurrence rate of naturalized plants and urbanization index were high in the survey sites adjacent to urban and agricultural areas.

강우시 농업 비점오염원 처리를 위한 FWS 인공습지의 적용성 평가 (Application of Free Water Surface Constructed Wetland for Treating the Agricultural Runoff)

  • 강창국;이소영;말라;김이형
    • 환경영향평가
    • /
    • 제19권1호
    • /
    • pp.83-89
    • /
    • 2010
  • The areas for agricultural purposes in Korea are decreasing every year because of urbanization. However, it is still 17.6% of the total national boundary on 2008. Most of the rice paddy fields are located near the waterbodies which require lots of water during rainy season from May to September. Also lots of nitrate and phosphate chemical fertilizers are spread on the fields every year in order to supply the nutrients for vegetation. The excess nutrients is impairs the water quality of rivers and lakes when it is washed out from the fields. The Korean Ministry of Environment (MOE) adapted the new water quality improvement program, which is the Total Daily Maximum Load, to improve the water quality and to protect the aquaecosystems. The constructed wetland is one of the possible ways to treat the agricultural runoff. The constructed wetland on this study area was constructed by MOE in 2007 to evaluate the application of the constructed wetlands. Plant growth continues to increase during the summer until it reaches its highest biomass of 6,032 g/$m^2$ in August and September. More researches about sedimentation, vegetation, water balance, etc. were performed to evaluate the removal efficiency, to find the removal mechanisms and to make the guidelines for design and maintenance.