• Title/Summary/Keyword: Source Position Estimation

Search Result 79, Processing Time 0.028 seconds

Assessment of Dose Distribution using the MIRD Phantom at Uterine Cervix and Surrounding Organs in High Doserate Brachytheraphy (자궁주위 방사선 근접치료시 MIRD 팬텀을 이용한 주변장기의 피폭환경평가)

  • Lee, Yun-Jong;Nho, Young-Chang;Lee, Jai-Ki
    • Korean Journal of Environmental Biology
    • /
    • v.24 no.4
    • /
    • pp.387-391
    • /
    • 2006
  • Computational and experimental dosimetry of Henschke applicator with respect to high dose rate brachytherapy using the MIRD phantom and a remote control afterloader were performed. A comparison of computational dosimetry was made between the simulated Monte Carlo dosimetry and GAMMADOT brachytherapy Planning system's dosimetry. Dose measurements was performed using ion chamber in a water phantom. Dose rates are calculated using Monte Carlo code MCNP4B and the GAMMADOT. Thecomputational models include the detailed geometry of Ir-192 source, tandem tube, and shielded ovoids for accurate estimation. And transit dose delivered during source extension to and retraction from a given dwell position was estimated by Monte Carlo simulations. Point doses at ICRU bladder/rectal pointswhich have been recommened by ICRU 38 was assessed. Calculated and measured dose distribution data agreed within 4% each other. The shielding effect of ovoids leads to 19% and 20% dose reduction at bladder surface and rectal points.

Characteristics of source localization with horizontal line array using frequency-difference autoproduct in the East Sea environment (동해 환경에서 차주파수 곱 및 수평선배열을 이용한 음원 위치추정 특성)

  • Joung-Soo Park;Jungyong Park;Su-Uk Son;Ho Seuk Bae;Keun-Wha Lee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.1
    • /
    • pp.29-38
    • /
    • 2024
  • The Matched Field Processing (MFP) is an estimation method for a source range and depth based on the prediction of sound propagation. However, as the frequency increases, the prediction inaccuracy of sound propagation increases, making it difficult to estimate the source position. Recently proposed, the Frequency-Difference Matched Field Processing (FD-MFP) is known to be robust even if there is a mismatch by applying a frequency-difference autoproduct extracted from the auto-correlation of a high frequency signal. In this paper, in order to evaluate the performance of the FD-MFP using a horizontal line array, simulations were conducted in the environment of the East Sea of Korea. In the area of Bottom Bounce (BB) and Convergence Zone (CZ) where detection of a sound source is possible at a long range, and the results of localization were analyzed. According to the the FD-MFP simulations of horizontal line array, the accuracy of localization is similar or degraded compared to the conventional MFP due to diffracted field and mismatch of sound speed. There was no clear result from the simulations conforming that the FD-MFP was more robust to mismatch than the conventional MFP.

Measurement Based Visualization Method of Radio Wave Environment Using a Mode Seeking Algorithm (모드 탐색 알고리즘을 이용한 측정치 기반의 전파 환경 시각화 기법)

  • Na, Dong Yeop;Koo, Hyung Il;Park, Yong Bae;Lee, Kyoung Hoon;Lee, Jae Ki;Hwang, In Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.3
    • /
    • pp.296-303
    • /
    • 2014
  • In this paper, we propose an algorithm to visualize radio wave environment based on the measured Received Signal Strength Indication( RSSI) and 3D geographic information. We estimate the source position using the circumcenter of the triangle and visualize the radio wave environment using the empirical propagation models. A mode seeking algorithm(mean-shift clustering) is used to seek the peak points and the center of gravity is utilized to reduce the estimation errors. Our approach finds its applications in the radio wave monitoring systems for the efficient utilization of radio resources.

3D Shape Reconstruction of Non-Lambertian Surface (Non-Lambertian면의 형상복원)

  • 김태은;이말례
    • Journal of Korea Multimedia Society
    • /
    • v.1 no.1
    • /
    • pp.26-36
    • /
    • 1998
  • It is very important study field in computer vision 'How we obtain 3D information from 2D image'. For this purpose, we must know position of camera, direction of light source, and surface reflectance property before we take the image, which are intrinsic information of the object in the scene. Among them, surface reflectance property presents very important clues. Most previous researches assume that objects have only Lambertian reflectance, but many real world objects have Non-Lambertian reflectance property. In this paper the new method for analyzing the properties of surface reflectance and reconstructing the shape of object through estimation of reflectance parameters is proposed. We have interest in Non-Lambertian reflectance surface that has specular reflection and diffuse reflection which can be explained by Torrance-Sparrow model. Photometric matching method proposed in this paper is robust method because it match reference image and object image considering the neighbor brightness distribution. Also in this thesis, the neural network based shaped reconstruction method is proposed, which can be performed in the absence of reflectance information. When brightness obtained by each light is inputted, neural network is trained by surface normal and can determine the surface shape of object.

  • PDF

Error analysis of acoustic target detection and localization using Cramer Rao lower bound (크래머 라오 하한을 이용한 음향 표적 탐지 및 위치추정 오차 분석)

  • Park, Ji Sung;Cho, Sungho;Kang, Donhyug
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.3
    • /
    • pp.218-227
    • /
    • 2017
  • In this paper, an algorithm to calculate both bearing and distance error for target detection and localization is proposed using the Cramer Rao lower bound to estimate the minium variance of their error in DOA (Direction Of Arrival) estimation. The performance of arrays in detection and localization depends on the accuracy of DOA, which is affected by a variation of SNR (Signal to Noise Ratio). The SNR is determined by sonar parameters such as a SL (Source Level), TL (Transmission Loss), NL (Noise Level), array shape and beam steering angle. For verification of the suggested method, a Monte Carlo simulation was performed to probabilistically calculate the bearing and distance error according to the SNR which varies with the relative position of the target in space and noise level.

Development of sound location visualization intelligent control system for using PM hearing impaired users (청각 장애인 PM 이용자를 위한 소리 위치 시각화 지능형 제어 시스템 개발)

  • Yong-Hyeon Jo;Jin Young Choi
    • Convergence Security Journal
    • /
    • v.22 no.2
    • /
    • pp.105-114
    • /
    • 2022
  • This paper is presents an intelligent control system that visualizes the direction of arrival for hearing impaired using personal mobility, and aims to recognize and prevent dangerous situations caused by sound such as alarm sounds and crack sounds on roads. The position estimation method of sound source uses a machine learning classification model characterized by generalized correlated phase transformation based on time difference of arrival. In the experimental environment reproducing the road situations, four classification models learned after extracting learning data according to wind speeds 0km/h, 5.8km/h, 14.2km/h, and 26.4km/h were compared with grid search cross validation, and the Muti-Layer Perceptron(MLP) model with the best performance was applied as the optimal algorithm. When wind occurred, the proposed algorithm showed an average performance improvement of 7.6-11.5% compared to the previous studies.

Analysis on the Positional Accuracy of the Non-orthogonal Two-pair kV Imaging Systems for Real-time Tumor Tracking Using XCAT (XCAT를 이용한 실시간 종양 위치 추적을 위한 비직교 스테레오 엑스선 영상시스템에서의 위치 추정 정확도 분석에 관한 연구)

  • Jeong, Hanseong;Kim, Youngju;Oh, Ohsung;Lee, Seho;Jeon, Hosang;Lee, Seung Wook
    • Progress in Medical Physics
    • /
    • v.26 no.3
    • /
    • pp.143-152
    • /
    • 2015
  • In this study, we aim to design the architecture of the kV imaging system for tumor tracking in the dual-head gantry system and analyze its accuracy by simulations. We established mathematical formulas and algorithms to track the tumor position with the two-pair kV imaging systems when they are in the non-orthogonal positions. The algorithms have been designed in the homogeneous coordinate framework and the position of the source and the detector coordinates are used to estimate the tumor position. 4D XCAT (4D extended cardiac-torso) software was used in the simulation to identify the influence of the angle between the two-pair kV imaging systems and the resolution of the detectors to the accuracy in the position estimation. A metal marker fiducial has been inserted in a numerical human phantom of XCAT and the kV projections were acquired at various angles and resolutions using CT projection software of the XCAT. As a result, a positional accuracy of less than about 1mm was achieved when the resolution of the detector is higher than 1.5 mm/pixel and the angle between the kV imaging systems is approximately between $90^{\circ}$ and $50^{\circ}$. When the resolution is lower than 1.5 mm/pixel, the positional errors were higher than 1mm and the error fluctuation by the angles was greater. The resolution of the detector was critical in the positional accuracy for the tumor tracking and determines the range for the acceptable angle range between the kV imaging systems. Also, we found that the positional accuracy analysis method using XCAT developed in this study is highly useful and will be a invaluable tool for further refined design of the kV imaging systems for tumor tracking systems.

Performance Estimation of Large-scale High-sensitive Compton Camera for Pyroprocessing Facility Monitoring (파이로 공정 모니터링용 대면적 고효율 콤프턴 카메라 성능 예측)

  • Kim, Young-Su;Park, Jin Hyung;Cho, Hwa Youn;Kim, Jae Hyeon;Kwon, Heungrok;Seo, Hee;Park, Se-Hwan;Kim, Chan Hyeong
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • Compton cameras overcome several limitations of conventional mechanical collimation based gamma imaging devices, such as pin-hole imaging devices, due to its electronic collimation based on coincidence logic. Especially large-scale Compton camera has wide field of view and high imaging sensitivity. Those merits suggest that a large-scale Compton camera might be applicable to monitoring nuclear materials in large facilities without necessity of portability. To that end, our research group have made an effort to design a large-scale Compton camera for safeguard application. Energy resolution or position resolution of large-area detectors vary with configuration style of the detectors. Those performances directly affect the image quality of the large-scale Compton camera. In the present study, a series of Geant4 Monte Carlo simulations were performed in order to examine the effect of those detector parameters. Performance of the designed large-scale Compton camera was also estimated for various monitoring condition with realistic modeling. The conclusion of the present study indicates that the energy resolution of the component detector is the limiting factor of imaging resolution rather than the position resolution. Also, the designed large-scale Compton camera provides the 16.3 cm image resolution in full width at half maximum (angular resolution: $9.26^{\circ}$) for the depleted uranium source considered in this study located at the 1 m from the system when the component detectors have 10% energy resolution and 7 mm position resolution.

Pelvic MRI Application to the Dosimetric Analysis in Brachytherapy of Uterine Cervix Carcinoma (자궁경부암의 강내조사치료에 있어서 흠수선량평가시 골반강 자기공명사진의 응용)

  • Chung, Woong-Ki;Nah, Byung-Sik;Ahn, Sung-Ja
    • Radiation Oncology Journal
    • /
    • v.15 no.1
    • /
    • pp.57-64
    • /
    • 1997
  • Purpose : Before we report the results of curative radiotherapy in cervix cancer patients, we review the significance and safety of our dose specification methods in the brachytherapy system to have the insight of the potential Predictive value of doses at specified points. Matersials and Methods : We analyze the 리5 cases of cervix cancer patients treated with intracavitary brachytherapy in the lateral simulation film we draw the isodose curve and observe the absorbed dose rate of point A, the reference point of bladder(SBD) and rectum(SRD). In the sagittal view of Pelvic MRI film we demarcate the tumor volume(TV) and determine whether the prescription dose curve of point A covers the tumor volume adequately by drawing the isodose curve as correctly as possible. Also we estimate the maximum Point dose of bladder(MBD) and rectum(MRD) and calculate the inclusion area where the absorbed dose rate is higher than that of point A in the bladder(HBV) and rectum(HRV), respectively. Results : Of forty-five cases, the isodose curve of point A seems to cover tumor volume optimally in only 24(53%). The optimal tumor coverage seems to be associated not with the stage of the disease but with the tumor volume. There is no statistically significant association between SBD/SRD and MBD/MRD, respectively. SRD has statistically marginally significant association with HRV, while TV has statistically significant association with HBV and HRV. Conclusion : Our current treatment calculation methods seem to have the defect in the aspects of the nonoptimal coverage of the bulky tumor and the inappropriate estimation of bladder dose. We therefore need to modify the applicator geometry to optimize the dose distribution at the position of lower tandem source. Also it appears that the position of the bladder in relation to the applicators needs to be defined individually to define 'hot spots'.

  • PDF