• Title/Summary/Keyword: Sound-pipe

Search Result 116, Processing Time 0.027 seconds

A Simulation for the Characteristics of the Sound-Pipe of King Song-Dok Bell (시뮬레이션에 의한 성덕대왕 신종 음관의 특성)

  • Choi Myung-Jin;Park Hong-Eul
    • Journal of the Korea Society for Simulation
    • /
    • v.14 no.4
    • /
    • pp.69-76
    • /
    • 2005
  • To investigate the characteristics of the sound-pipe on the top of King Song-Dok bell, using computer simulation, the throat impedance was evaluated for the straight pipe and conical pipes with varying taper angles. When sound propagates in a rigid walled, unflanged circular pipe with wavelength larger than radius, the acoustic motion is planar, much as in a bar. The incident sound waves are reflected at the end of pipe and some of them are transmitted. The reflection coefficient and radiation impedance of the sound-pipe of King Song-Dok bell were calculated, and the results demonstrated that the high frequency sound is radiated through the sound-pipe. It behaves like a frequency filter.

  • PDF

An Experimental Study on the Impulse Noise Emitted from the Exit of a Perforated Pipe (다공관 출구로부터 방사된 충격성 소음에 관한 실험적 연구)

  • Heo, Sung-Wook;Je, Hyun-Su;Yang, Soo-Young;Lee, Dong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2066-2070
    • /
    • 2003
  • This experimental study describes the propagation characteristics and suppression of the impulse noise emitted from the exit of a perforated pipe attached to the open end of a simple shock tube. The experiment is performed through the systematic change of the shock wave Mach number and the geometrical parameters such as the porosity, hole diameter and length of the perforated pipe. The experimental results for the near and far sound field are presented and explained in comparison with those for a straight pipe. The results obtained show that for the near sound field the impulse noise strongly propagates toward to the pipe axis, but for the far sound field the impulse noise uniformly propagates toward to the all directions, indicating that the directivity pattern is almost same regardless of the pipe type. Moreover, the noise reduction performance of perforated pipe depends upon the condition of sound field. For the near sound field the perforated pipe has a little performance to suppress the impulse noise, but for the far sound field the perforated pipe has little performance to suppress the impulse noise.

  • PDF

Experimental Analysis on Acoustic Characteristics of the Sound-Pipe of King Song-Dok Bell (실험적 분석을 통하여 본 성덕 대왕(聖德 大王) 신종(神鐘) 음통(音筒)의 음향학적 특성)

  • Yoon, Doo-Byung;Kim, Yang-Hann
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.6
    • /
    • pp.19-24
    • /
    • 1997
  • The acoustic characteristics of the sound-pipe of King Song-Dok bell, which is located on the top, are investigated by experiment and simulation. The experimental results;reflection coefficient, and radiation impedance, demonstrate that the sound-pipe is capable of radiating high frequency(above 300Hz) sound; it behave as damper. It is also found that a waveguide model well presens the acoustic characteristics of the sound-pipe.

  • PDF

An Experimental Study on the Impulse Wave Discharged from the Exit of a Perforated Pipe (다공관 출구로부터 방출되는 펄스파에 관한 실험적 연구)

  • 허성욱;이동훈;김희동
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.67-71
    • /
    • 2003
  • The propagation characteristics of the impulse wave discharged from the exit of a perforated pipe is investigated through a simple shock tube facility. The pressure histories and directivities of the impulse wave propagating outside from the exit of pipe with several different configurations are analyzed for the range of the incident weak shock wave Mach number between 1.02 and 1.2. In the shock tube experiments, the impulse wave are visualized by a Schlieren optical system for the purpose of understanding its propagation characteristics. The experimental results show that for the near sound field the impulse noise strongly propagates toward to the pipe axis, but for the far sound field the impulse noise uniformly propagates toward to the omnidirections, indicating that the directivity pattern is almost same regardless of the pipe type. Especially, it is shown that the perforated pipe has a little performance to reduce the impulse noise only for the near sound field

  • PDF

A Method for the Measurement of Flow Rate in a Pipe Using a Microphone Array (등간격으로 배열된 마이크로폰을 이용한 관내 유량측정 방법)

  • 김용범;김양한
    • Journal of KSNVE
    • /
    • v.11 no.1
    • /
    • pp.57-67
    • /
    • 2001
  • Proposed in this paper is a method of measurement of the flow rate in a pipe. The sound waves which are propagated within a pipe are characterized by that the wavenumber in the axial direction is changed according to the flow rate, and these characteristics are used in the present method of measurement of the flow rate. The amount of change in wavenumber of sound waves according to the flow rate can be obtained from the relationship among acoustic pressure signals within a pipe, which are measured by using a microphone array. The flow rate can be obtained by using the amount of change in wavenumber of sound waves and the relational equation of the flow rate. With respect to errors that can occur during the measurement of the flow rate, the types of errors and the method of correction of those errors are presented. This method of measurement of the flow rate has application limitation conditions due to the sensor interval, assumption of sound waves as plane waves, etc. The numerical simulation and experiments for measuring the flow rate of air in a pipe are performed in order to verify the applicability of this method of measurement of the flow rate. The experimental results are shown to be similar to those of the numerical simulation. And the flow rate measured is shown to be consistent with the actual value within 5% error bound.

  • PDF

A Study on the Reduction Method of Heavy-weight floor impact sound and Plumbing noise in Decrepit Apartment houses (노후 아파트의 바닥충격음 및 급·배수 소음 저감방안에 관한 연구)

  • Joo, Moon Ki;Han, Myung Ho;Oh, Yang Ki
    • KIEAE Journal
    • /
    • v.9 no.2
    • /
    • pp.99-106
    • /
    • 2009
  • The noise in apartment buildings are major factor that determine the quality of indoor noise environment. Particularly, the noise from children's running footsteps and plumbing noise have caused the residents who live in decrepit apartment houses to uncomfortable environment. And as time go by, sound performance are getting worse according to the aging of the facilities. So this study deals with the plans to improve the sound performance of decrepit apartment house. To compare the noise reduction, we measured the heavy-weight impact sound level and plumbing noise level before and after changes the measurement conditions. As the results of measurements, the heavy-weight impact sound level were decreased when stiffness reinforcement were installed on slab. Especially the sound level were decreased 2.1-7.6dB in 50-80Hz of low frequency range. Instead of PVC pipe system, cast iron pipe and triple elbow drain pipe systems were installed. Noise level were decreased 15dB(A) in 250Hz. Noise level of pipe system's on the slab is less than under slab one. On the contrary water saving stool showed increasing the noise level.

Propagation Characteristics of the Impulse Noise Emitted from the Exit of a Perforated Pipe (다공관 출구로부터 방사된 충격성 소음의 전파특성)

  • 제현수;양수영;이동훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.168-173
    • /
    • 2003
  • This experimental study describes the propagation characteristics of the impulse noise emitted from the exit of a perforated pipe attached to the open end of a simple shock tube. The pressure amplitudes and directivities of the impulse wave propagating from the exit of perforated pipe with several different configurations are measured and analyzed fur the range of the incident shock wave Mach number between 1.02 and 1.2. In the experiments, the impulse waves are visualized by a Schlieren optical system for the purpose of investigating their propagation pattern. The results obtained show that for the near sound field the impulse noise strongly propagates toward to the pipe axis, but for the far sound field the impulse noise uniformly propagates toward to the all directions, indicating that the directivity pattern is almost same regardless of the pipe type. Moreover, it is shown that for the far sound field the perforated pipe has little performance to suppress the impulse noise.

  • PDF

An Experimental Study on the Propagation of Impulse Noise in the Far Sound Field (원음장에서의 충격성 소음전파에 관한 실험적 연구)

  • 송화영;제현수;이주원;이성태;이동훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.852-855
    • /
    • 2004
  • This experimental study describes the propagation characteristics of the impulse noise emitted from the exit of a straight pipe attached to the open end of a simple shock tube. The sound pressure level and directivity of the impulse noise propagating from the exit of pipe with several different diameters are measured in the far sound fold for the range of the incident shock wave Mach number between 1.07 and 1.26. The experimental results showed that the peak values of impulse noises had a strong dependance on the exit diameter of a pipe and the shock wave Mach number. The impulse noise had the directivity propagating toward to the pipe axis and the characteristics of inverse square law of propagation distance. Moreover, it was shown that the one-third octave band SPL of impulse noise was almost constant regardless of the frequency band.

  • PDF

A Study on the Noise Produced by Unsteady Exhaust Efflux of Engine (기관의 비정상 배기배출에 의해 생성되는 소음에 관한 연구)

  • 이민호;박명규
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.4
    • /
    • pp.191-200
    • /
    • 1997
  • This paper discusses prediction of the sound pressure level produced by simple engine exhaust systems(plain pipe, plain expansion chamber pipe, plain expansion chamber with internally extended inlet and outlet pipe, perforated pipe enclosed in a plain expansion chamber) and a computer program has been developed which predicts the sound pressure level and the frequency spectrum. The program utilizes unsteady flow gas dynamic theory and acoustic theory to predict the pressure-time history in the exhaust system and the mass flow rate-time history at the open end of the system and the sound pressure levels(1/3 Octave band levels) and the frequency spectrum in semi-anechoic room. The predictions are compared with measured levels and show a high degree of correlation.

  • PDF

Experimental Study on the Noise Reduction of Drainage Pipe by a kind of Curve Pipe (곡관 종류에 따른 배수관내의 소음 저감에 관한 실험적 연구)

  • Kim, Jeong-Hoon;Shim, Dong-Hyouk;Kim, Kyoung-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.187-192
    • /
    • 2006
  • The effect where the multiple sound arrest ing goes mad to the human being does the zone. From like that cotton, this dissertation the both sides flag executed the research regarding a sound arresting reduction in the object in one example. It compared the piping structure which generally is space-time and a specific piping structure and it tested and research and the modeling regarding a sound arresting reduction the simulation which leads and it executed result and comparison of existing it analyzed. The duplication where the reduction effect is bigger the result general VG2 piping structure than escape it did with the fact that it appears the large effect the piping structure which it connects. Also, the straight pipe effect of multiple sound arresting could not go mad with the fact that.

  • PDF