• Title/Summary/Keyword: Sound Vibration

Search Result 2,254, Processing Time 0.025 seconds

Tendency of Calibration and Test for Acoustic Field in KRISS (KRISS에서 수행된 음향관련 교정 및 시험 동향)

  • 서재갑;권휴상;정성수;조문재;서상준
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.448-452
    • /
    • 2002
  • We report the number of calibration and test for acoustic field which were conducted in KRISS between the year of 1990 and 2001. The items contain sound level meter and calibrator for calibration and sound absorption coefficient, transmission loss, sound pressure level of siren, sound pressure level and power of acoustic instrument and relative accessories for test. The data show that the number of them have been increased continuously.

  • PDF

Rating of sound absorption - sound absorber for use in building (건축물에 사용되는 흡음재의 흡음률 평가방법 고찰)

  • 이태강;송민정;김선우
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1120-1125
    • /
    • 2002
  • Recently Korean Industrial Standards has been revised and established newly accordance with the ISO system, especially ISO 140 series. This study aims to introduce and review ISO l1654 which contents rating of sound absorption. It is available to establish appropriate evaluating method and Korean Industrial Standard of the sound absorber for use in building.

  • PDF

Sound Transmission Loss of Double Walls (이중판의 차음손실)

  • 강현주;김현실;김재승;김상렬
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.473-480
    • /
    • 1997
  • This paper presents the feasibility of the assumption that incident sound to panels might have a Gaussian distribution, instead of the well-known uniform distribution in the analysis of sound transmission loss of panels. Being compared with the latter, it seems that the former is physically more concrete. To prove the assumption, the problems with diffuse fields in reverberation room are considered by case study and comparisions of the prediction with the measurement of sound transmission loss of walls are performed. The results show good agreement between the two values.

  • PDF

Analysis of the Sound field in a Reverberation Room(II) (잔향실의 음장해석 (II))

  • 임정빈;권영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.681-686
    • /
    • 1997
  • Foamed aluminum is well known metallic porous sound absorption material which has excellent properties of light weight and high absorbing performance. For the purpose of finding out the sound field characteristics within a simple closed cubic enclosure with foamed aluminum, analytic and experimental studies are performed. For the first time, the standing wave apparatus is used to measure absorption coefficient and impedance of the foamed aluminum. Next, the sound effects of absorption material in acoustically loaded rectangular enclosure are identified according as the foamed aluminim is to be or not.

  • PDF

Sound Energy Distributions according to Incident Angles on the Bounding Surfaces in the Reverberation Room (잔향실 경계면에서 입사각에 따른 음에너지 분포)

  • 강현주;이정권;김현실;김재승;김상렬
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.279-285
    • /
    • 1997
  • In this paper, the validity for the application of the diffuse sound field theory to the real sound filed, especially on the bounding surfaces of the rooms, was studied. Numerical simulations using ray tracing technique for two models, namely spheres and a reverberant room, were performed. Calculation results show that the distribution of the incident sound energy vs incident angles is approximated to Gaussian distribution, not to the uniform distribution.

  • PDF

Evaluation of Design Variables to Improve Sound Radiation and Transmission Loss Performances of a Dash Panel Component of an Automotive Vehicle (방사소음 및 투과소음에 대한 승용차량 대시패널의 설계인자 별 영향도 분석)

  • Yoo, Ji-Woo;Chae, Ki-Sang;Park, Chul-Min;Suh, Jin-Kwan;Lee, Ki-Yong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.1
    • /
    • pp.22-28
    • /
    • 2012
  • While a dash panel component, close to passengers, plays a very important role to protect heat and noise from a power train, it is also a main path that transfers vibration energy and eventually radiates acoustic noise into the cavity. Therefore, it is important to provide optimal design schemes incorporating sound packages such as a dash isolation pad and a floor carpet, as well as structures. The present study is the extension of the previous investigation how design variables affect sound radiation, which was carried out using the simple plate and framed system. A novel FE-SEA hybrid simulation model is used for this study. The system taken into account is a dash panel component of a sedan vehicle, which includes front pillars, front side members, a dash panel and corresponding sound packages. Design variables such as panel thicknesses and sound packages are investigated how they are related to two main NVH indexes, sound radiation power(i.e. structure-borne) and sound transmission loss(i.e. air borne). In the viewpoint of obtaining better NVH performance, it is shown that these two indexes do not always result in same tendencies of improvement, which suggests that they should be dealt with independently and are also dependent on frequency regions.

Analysis of the Phase Change of a Laser Beam in a Laser Doppler Vibrometer Due To the Sound Field Radiated From Structures Vibrating Underwater (수중에서 진동하는 구조물로부터 방사되는 음에 기인한 레이저 도플러 진동측정기 광선의 위상변화에 대한 분석)

  • Kil, Hyun-Gwon;Jarzynski, Jacek
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.178-182
    • /
    • 2008
  • In measurements of the vibration of structures underwater with a laser Doppler vibrometer, the surface vibration is measured by means of detecting the phase change of the laser beam due to the structural vibration. The laser beam passes through the sound field radiated from the vibrating structures underwater. It experiences an additional phase change due to the change in refractive index in the radiated sound field. This phase change due to the sound field may cause the error in surface vibration measurements. In this paper, this phase change due to the radiated sound filed has been analyzed. The numerical simulation has been peformed to evaluate the phase change in sound field radiated from an infinite cylindrical structure vibrating underwater.

Sound Radiation Property of Tribo-System

  • Stoimenov, B.L.;Kato, K.;Adachi, K.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.383-384
    • /
    • 2002
  • Frictional sound is observed in great many practical systems, but its generation mechanism is still unknown Model systems are best suited for research on the fundamental mechanisms, but results cannot be easily applied to real systems, because each system has different sound radiation properties. At present, there is no easy method for evaluation of these properties. We propose to describe the sound radiation property of a tribo-system by the relationship between friction-induced sound power and the friction-induced vibration velocity of the contact element. It was found that the sound power of a tribo-system is linearly proportional to the mean-square velocity of the sliding element by a constant coefficient having the dimension of mass flow rate (kg/s).

  • PDF

Sound Power Spectrum Guideline for a Refrigerator based on Subjective Evaluation (소비자 감성 평가를 통한 냉장고 Sound Power Spectrum Guideline)

  • Lee, Jin-Kyung;Jo, Kyoung-Sook;Lee, Jea-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.634-637
    • /
    • 2007
  • A weighted sound pressure level has been used to evaluate sounds test or sound quality test for a refrigerator up to present but the customer had different satisfactions of refrigerator sounds with different listening position. It means that there was a sound directivity caused by a position of fan or compressor. In this paper, we proposed a sound power spectrum guideline that represents total sound of refrigerator.

  • PDF