• Title/Summary/Keyword: Sound Direction

Search Result 391, Processing Time 0.028 seconds

A new sound source localization method robust to microphones' gain (마이크로폰의 이득 특성에 강인한 위치 추적)

  • Choi Ji-Sung;Lee Ji-Yeoun;Jeong Sang-Bae;Hahn Min-Soo
    • Proceedings of the KSPS conference
    • /
    • 2006.05a
    • /
    • pp.127-130
    • /
    • 2006
  • This paper suggests an algorithm that can estimate the direction of the sound source with three microphones arranged on a circle. The algorithm is robust to microphones' gains because it uses only the time differences between microphones. To make this possible, a cost function which normalizes the microphone's gains is utilized and a procedure to detect the rough position of the sound source is also proposed. Through our experiments, we obtained significant performance improvement compared with the energy-based localizer.

  • PDF

An Experimental Study on the Influence of the Internal Cavity and Gap on the Bell Acoustics (내부 공동과 간극이 종 음향에 미치는 영향에 대한 실험적 연구)

  • Jeong, Won-Tae;Kang, Yeon-June;Kim, Seock-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.9
    • /
    • pp.822-827
    • /
    • 2010
  • In this study, it is experimentally investigated how bell acoustics are influenced by the internal cavity of the bell and the gap between the bell bottom and the floor. Acoustic transmission function and natural frequency of a test bell are measured and analysed. Experimental study is conducted to evaluated how the resonance effect influences the bell sound and how the bell sound is different according to the striking condition and the measurement direction. Acoustic resonance frequency of the cavity-gap system is predicted by boundary element analysis using SYSNOIS and the validity of the predicted result is verified by experiment. The result of the study could be applied to determine the optimal gap size which makes the bell sound strong and long.

Study on Sound Transmission Characteristics by the Delamination of Acoustic Window (음향창 박리에 따른 음향투과특성 연구)

  • Jung, Byung-Kyoo;Kang, Myunghwan;Seo, Youngsoo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.6
    • /
    • pp.375-381
    • /
    • 2021
  • This paper investigated sound characteristics by the delamination of an acoustic window. In detail, acoustic scattering and transmission characteristics on the delaminated acoustic window were estimated using an experimental and numerical approach. The experiment results showed that acoustic wave could lose its amplitude and take phase delay when it propagates the delaminated acoustic window. The numerical results showed that scattering phenomena occur on the delamination surface. The scattering characteristics presented differently according to the delamination size in the acoustic window. It also showed that transmitted sound distortion due to delamination could cause a direction detection error of SONAR by changing the position of the main lobe and the magnitude of the side lobe. In conclusion, the delamination has to be managed during the manufacturing process of acoustic windows.

Development of Rustling Sound Generator Using Reciprocating Motion and Evaluation of Its Fabric Sound (왕복운동에 의한 직물마찰음발생장치의 개발 및 이를 이용한 직물소리 평가)

  • Kim Chun-Jeong;Cho Gil-Soo
    • Science of Emotion and Sensibility
    • /
    • v.9 no.2
    • /
    • pp.133-140
    • /
    • 2006
  • In order to investigate the sensation of the fabric sound simulating the real wear-condition, the fabric sound simulator using reciprocating friction was developed. Fabric sounds from 5 specimen were generated by the fabric sound simulator and recorded using high performance microphone. Physical sound parameters of fabrics including level pressure of total sound (LPT), level range (${\Delta}L$), and frequency differences (${\Delta}f$) were calculated. For psychological evaluation, seven adjectives for sound (softness, loudness, sharpness, clearness, roughness, highness, and pleasantness) were used as the semantic differential scale. Fabric sounds by reciprocating friction of nylon taffeta and polyester leno had the highest value of LPT and evaluated as loud, sharp, rough, and unpleasant while polyester ultra suede and silk crepe de chine haying the lower LPT and ${\Delta}f$ were perceived as soft and quite. Comparing with fabric sound by one-way friction, fabric sound by reciprocation friction was perceived as more sharp, loud, and rough. LPT was also the most important factor affecting the sensation of the fabric sound by reciprocating friction.

  • PDF

Direction Estimation of Multiple Sound Sources Using Circular Probability Distributions (순환 확률분포를 이용한 다중 음원 방향 추정)

  • Nam, Seung-Hyon;Kim, Yong-Hoh
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.6
    • /
    • pp.308-314
    • /
    • 2011
  • This paper presents techniques for estimating directions of multiple sound sources ranging from $0^{\circ}$ to $360^{\circ}$ using circular probability distributions having a periodic property. Phase differences containing direction information of sources can be modeled as mixtures of multiple probability distributions and source directions can be estimated by maximizing log-likelihood functions. Although the von Mises distribution is widely used for analyzing this kind of periodic data, we define a new class of circular probability distributions from Gaussian and Laplacian distributions by adopting a modulo operation to have $2{\pi}$-periodicity. Direction estimation with these circular probability distributions is done by implementing corresponding EM (Expectation-Maximization) algorithms. Simulation results in various reverberant environments confirm that Laplacian distribution provides better performance than von Mises and Gaussian distributions.

Sound Source Localization Method Applied to Robot System (로봇 시스템에 적용될 음원 위치 추정 방법)

  • Kwon, Byoung-Ho;Park, Young-Jin;Park, Youn-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.28-32
    • /
    • 2007
  • While various methods for sound source localization have been developed, most of them utilize on the time difference of arrival (TDOA) between microphones or the measured head related transfer functions (HRTF). In case of a real robot implementation, the former has a merit of light computation load to estimate the sound direction but can not consider the effect of platform on TDOAs, while the latter can, because characteristics of robot platform are included in HRTF. However, the latter needs large resources for the HRTF database of a specific robot platform. We propose the compensation method which has the light computation load while the effect of platform on TDOA can be taken into account. The proposed method is used with spherical head related transfer function (SHRTF) on the assumption that robot platform, for example a robot head, installed microphones can be modeled to a sphere. We verify that the proposed method decreases the estimation error caused by the robot platform through the simulation and experiment in real environment.

  • PDF

A Method for the Measurement of Flow Rate in a Pipe Using a Microphone Array (등간격으로 배열된 마이크로폰을 이용한 관내 유량측정 방법)

  • 김용범;김양한
    • Journal of KSNVE
    • /
    • v.11 no.1
    • /
    • pp.57-67
    • /
    • 2001
  • Proposed in this paper is a method of measurement of the flow rate in a pipe. The sound waves which are propagated within a pipe are characterized by that the wavenumber in the axial direction is changed according to the flow rate, and these characteristics are used in the present method of measurement of the flow rate. The amount of change in wavenumber of sound waves according to the flow rate can be obtained from the relationship among acoustic pressure signals within a pipe, which are measured by using a microphone array. The flow rate can be obtained by using the amount of change in wavenumber of sound waves and the relational equation of the flow rate. With respect to errors that can occur during the measurement of the flow rate, the types of errors and the method of correction of those errors are presented. This method of measurement of the flow rate has application limitation conditions due to the sensor interval, assumption of sound waves as plane waves, etc. The numerical simulation and experiments for measuring the flow rate of air in a pipe are performed in order to verify the applicability of this method of measurement of the flow rate. The experimental results are shown to be similar to those of the numerical simulation. And the flow rate measured is shown to be consistent with the actual value within 5% error bound.

  • PDF

Performance Test and Evaluations of a MEMS Microphone for the Hearing Impaired

  • Kwak, Jun-Hyuk;Kang, Hanmi;Lee, YoungHwa;Jung, Youngdo;Kim, Jin-Hwan;Hur, Shin
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.326-331
    • /
    • 2014
  • In this study, a MEMS microphone that uses $Si_3N_4$ as the vibration membrane was produced for application as an auditory device using a sound visualization technique (sound visualization) for the hearing impaired. Two sheets of 6-inch silicon wafer were each fabricated into a vibration membrane and back plate, after which, wafer bonding was performed. A certain amount of charge was created between the bonded vibration membrane and the back plate electrodes, and a MEMS microphone that functioned through the capacitive method that uses change in such charge was fabricated. In order to evaluate the characteristics of the prepared MEMS microphone, the frequency flatness, frequency response, properties of phase between samples, and directivity according to the direction of sound source were analyzed. The MEMS microphone showed excellent flatness per frequency in the audio frequency (100 Hz-10 kHz) and a high response of at least -42 dB (sound pressure level). Further, a stable differential phase between the samples of within -3 dB was observed between 100 Hz-6 kHz. In particular, excellent omnidirectional properties were demonstrated in the frequency range of 125 Hz-4 kHz.

Noise Sources Localization on High-Speed Trains by using a Microphone Array (마이크로폰 어레이를 이용한 고속철도 차량의 소음원 도출 연구)

  • Noh, Hee-Min;Cho, Jun-Ho;Choi, Sung-Hoon;Hong, Suk-Yoon
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.1
    • /
    • pp.23-28
    • /
    • 2012
  • In this paper, noise of Korean high-speed trains (KTX) running at different speed from 150 to 300km/h was measured by a microphone array system. From the measurement, relation between maximum sound pressure levels and train moving speeds of KTX was drawn and a regression coefficient from the relation was also derived. Moreover, increases of SPL with speeds of KTX were analyzed in the frequency domain. From the analysis, sound characteristics of passing-by noise of KTX were provided. Then, dominant noise source areas were obtained from the measurements and propagation patterns of KTX in vertical direction were also investigated. Finally, noise sources of KTX were identified from inspection of noise maps.

Sound change of /o/ in modern Seoul Korean: Focused on relations with acoustic characteristics and perception

  • Igeta, Takako;Sonu, Mee;Arai, Takayuki
    • Phonetics and Speech Sciences
    • /
    • v.6 no.3
    • /
    • pp.109-119
    • /
    • 2014
  • This article represents a first step in a large study aimed at elucidating the relationship between production and perception involved in sound change of /o/ in (Seoul) Korean. In this paper we present the results of a production study and a perception experiment. For the production study we examined vowel production data of 20 young adult speakers, measuring the first and second formants, then conducted a discriminant analysis based on those values. In terms of their F1-F2 values, the distribution of /o/ and /u/ were close, and even overlapping in some circumstances, which is consistent with the literature. This tendency was more apparent among the female speakers than the males. Moreover, with the females' distributions, /o/ was frequently categorized as /u/, suggesting that the direction of the sound change is indeed increasing from /o/ to /u/. Next, to investigate the effects of this proximity on perception, we used the production data of five randomly selected speakers from the production study as stimuli for a perception experiment in which 21 young adult native speakers of (Seoul) Korean performed a vowel identification task and provided a Goodness rating on a 5-point scale. We found that while rates of correctness were high, when these correctness scores were weighted by the Goodness rating, these "weighted correctness" scores were lower in some cases, indicating a degree of confusion in distinguishing between the two vowels.