• Title/Summary/Keyword: Sorption equilibrium

Search Result 201, Processing Time 0.024 seconds

The Effect of Various Humectants on Equilibrium Moisture Content and Storage Stability of Seasoned Squid (여러가지 보습제가 조미오징어 평형수분함량에 미치는 영향)

  • Rhee, Chul;Kang, Chang-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.704-710
    • /
    • 1988
  • This study was, firstly, to investigate water holding capacity in terms of variation of moisture sorption isotherms of seasoned squid treated with sodium lactate, glycerol, propylene glycol, sorbitol, mannitol, sodium benzoate, potassium sorbate and calcium propionate, and secondly, the effect of humectant treatments on storage stability was studied. The criteria for storage stability was based on three quality factors, namely, lipid oxiations, color development by non-enzymatic browning reactions and lipid oxidation, and mold growth. The effect of humectants on equilibrium moisture content was in the following increasing order; mannitol < sorbitol < sodium lactate < propylene glycol < glycerol. The experimental data indicated that sodium lactate has, in practice, potentially positive effect on processing of seasoned squid. During the storage period of 60 days, TBA values increased in all samples tested as humectants concentrations increased up to 10%. However, in the range of 1-7% sodium lactate treatment, the degree of lipid oxidation, browning reactions and mild growth were not high enough to affect the quality of seasoned squid, when compared with conventionally manufactured ones.

  • PDF

Batch and Flow-Through Column Studies for Cr(VI) Sorption to Activated Carbon Fiber

  • Lee, In;Park, Jeong-Ann;Kang, Jin-Kyu;Kim, Jae-Hyun;Son, Jeong-Woo;Yi, In-Geol;Kim, Song-Bae
    • Environmental Engineering Research
    • /
    • v.19 no.2
    • /
    • pp.157-163
    • /
    • 2014
  • The adsorption of Cr(VI) from aqueous solutions to activated carbon fiber (ACF) was investigated using both batch and flow-through column experiments. The batch experiments (adsorbent dose, 10 g/L; initial Cr(VI) concentration, 5-500 mg/L) showed that the maximum adsorption capacity of Cr(VI) to ACF was determined to 20.54 mg/g. The adsorption of Cr(VI) to ACF was sensitive to solution pH, decreasing from 9.09 to 0.66 mg/g with increasing pH from 2.6 to 9.9; the adsorption capacity was the highest at the highly acidic solution pHs. Kinetic model analysis showed that the Elovich model was the most suitable for describing the kinetic data among three (pseudo-first-order, pseudo-second-order, and Elovich) models. From the nonlinear regression analysis, the Elovich model parameter values were determined to be ${\alpha}$ = 162.65 mg/g/h and ${\beta}$ = 2.10 g/mg. Equilibrium isotherm model analysis demonstrated that among three (Langmuir, Freundlich, Redlich-Peterson) models, both Freundlich and Redlich-Peterson models were suitable for describing the equilibrium data. In the model analysis, the Redlich-Peterson model fit was superimposed on the Freundlich fit. The Freundlich model parameter values were determined to be $K_F$ = 0.52 L/g and 1/n = 0.56. The flow-through column experiments showed that the adsorption capacities of ACF in the given experimental conditions (column length, 10 cm; inner diameter, 1.5 cm; flow rate, 0.5 and 1.0 mL/min; influent Cr(VI) concentration, 10 mg/L) were in the range of 2.35-4.20 mg/g. This study demonstrated that activated carbon fiber was effective for the removal of Cr(VI) from aqueous solutions.

Browning and Moisture Sorption Characteristics of Rubus coreanus Prepared by Different Drying Methods (건조방법에 따른 복분자 분말의 갈변 및 흡습 특성)

  • Chung, Hun-Sik;Seong, Jong-Hwan;Lee, Young-Guen;Kim, Han-Soo;Lee, Joo-Baek;Youn, Kwang-Sup
    • Food Science and Preservation
    • /
    • v.16 no.6
    • /
    • pp.797-803
    • /
    • 2009
  • The effects of drying methods on the browning and moisture sorption characteristics of Rubus coreanus were studied. Fruits were steamed for 5 min at $100^{\circ}C$, dried by sun drying, infrared drying, or freeze drying, and powdered to a size of 20 mesh. Color values were measured and equilibrium moisture contents (EMC) were determined at $20^{\circ}C$, over a range of water activity ($a_w$) from 0.11 to 0.90. The browning indices $L^*$ and $a^*$ values were higher and lower, respectively, in freeze-dried Rubus coreanus compared with other samples. The $b^*$ value was greatest in freeze-dried Rubus coreanus. EMC tended to increase with increasing $a_w$ values, and a particularly sharp increment was observed above 0.75 $a_w$. The EMC of freeze-dried Rubus coreanus was significantly higher compared with the EMC of sun-dried and infrared-dried fruit at constant aw. The moisture sorption isotherms showed a typical sigmoid shape, and the Halsey, Kuhn, and Oswin models were the best fits for the sun-dried, infrared-dried, and freeze-dried powder isotherms, respectively. With respect to monolayer moisture content, the Guggenheim-Anderson-Boer (GAB) equation showed that the various drying methods yielded very different results, with monolayer moisture contents of 0.005 g $H_2O/g$ dry solid in infrared-dried and 0.019 g $H_2O/g$ dry solid in sun- and freeze-dried powders, respectively. These results indicate that the drying method affects the browning and moisture sorption characteristics of Rubus coreanus.

Adsorption of Heavy Metals by Natural Adsorbents of Green Tea and Ginseng Leaves (녹차잎과 인삼잎의 중금속 흡착능 평가 연구)

  • Kim, Sohyun;Song, Jinyoung;Yoon, Kwangsuk;Kang, Eunmi;Song, Hocheol
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.5
    • /
    • pp.128-134
    • /
    • 2017
  • This work presents the adsorption capability of green tea and ginseng leaves to adsorb heavy metals such as Cd(II), Cu(II), and Pb(II) in aqueous solution. FT-IR analysis indicates the presence of oxygen containing functional groups (carboxyl groups) in two kinds of leaves. High pH condition was favorable to the adsorption of heavy metal ions due to the enhanced electrostatic attraction and the precipitation reaction of metal ions. The adsorption of Cd(II), Cu(II), and Pb(II) reached equilibrium within 10 min, achieving high removal efficiencies of 80.3-97.5%. The adsorption kinetics data of heavy metal ions were fitted well with the pseudo-second-order kinetic model. The maximum adsorption amounts of Cd(II), Cu(II), and Pb(II) ions were 8, 3.5, and 15 mg/g, respectively, in the initial concentration range from 0.15 to 0.75 mM. Based on the fitting data obtained from isotherm models, heavy metal adsorption by green tea and ginseng leaves could occur via multi-layer sorption.

Remediation of cesium-contaminated fine soil using electrokinetic method

  • Kim, Ilgook;Kim, June-Hyun;Kim, Sung-Man;Park, Chan Woo;Yang, Hee-Man;Yoon, In-Ho
    • Membrane and Water Treatment
    • /
    • v.11 no.3
    • /
    • pp.189-193
    • /
    • 2020
  • In this study, electrokinetic remediation equipment was used to remove cesium (Cs) from clay soil and waste solution was treated with sorption process. The influence of electrokinetic process on the removal of Cs was evaluated under the condition of applied electric voltage of 15.0-20.0 V. In addition to monitoring the Cs removal, electrical current and temperature of the electrolyte during experiment were investigated. The removal efficiency of Cs from soil by electrokinetic method was more than 90%. After electrokinetic remediation, Cs was selectively separated from soil waste solution using sorbents. Various adsorption agents such as potassium nickel hexacyanoferrate (KNiHCF), Prussian blue, sodium tetraphenylborate (NaTPB), and zeolite were compared and KNiHCF showed the highest Cs removal efficiency. The Cs adsorption on KNiHCF reached equilibrium in 30 min. The maximum adsorption capacity was 120.4 mg/g at 0.1 g/L of adsorbent dosage. These results demonstrated that our proposed process combined electrokinetic remediation of soil and waste solution treatment with metal ferrocyanide can be a promising technique to decontaminate Cs-contaminated fine soil.

Pb Biosorption by Saccharomyces cerevisiae (Saccharomyces cerevisiae에 의한 Pb 생체흡착)

  • 안갑환;서근학
    • KSBB Journal
    • /
    • v.11 no.2
    • /
    • pp.173-180
    • /
    • 1996
  • The contamination of the environment by heavy metals results in a serious public health problem due to the toxicity of those pollutants even at low concentrations. Microorganisms may be used to remediate wastewaters contamlialtd with heavy metals. The waste S. cerevisiae is an inexpensive readily available source of biomass for bioremediation of wastewater. S. cerevisiae was investigated for their ability to absorb Pb. The crushed biomass of S. cerevisiae exhibited higher Pb uptake capacity than the living S. cerevisiae and the sterilized S. cerevisiae. At the same metal concentration, metal uptake per unit concentration or adsorbent decreased when the biomass concentration rises. The order of the biosorption capacity of the living S. cerevisiae was Pb>Cu>Cd=Co>Cr. When S. cerevisiae was pretreated with 0.1 M NaOH, Pb uptake was increased by 150 percent and 0.1 M HC1, 0.1 M $H_2S_O4$ solutions were efficient in the desorption of Pb. The sorption equilibrium of Pb ions can be described by the Freundlich and Langmuir models.

  • PDF

Removal of Cd(II) and Cu(II) from Aqueous Solution by Agro Biomass: Equilibrium, Kinetic and Thermodynamic Studies

  • Reddy, Desireddy Harikishore Kumar;Lee, Seung-Mok;Seshaiah, Kalluru
    • Environmental Engineering Research
    • /
    • v.17 no.3
    • /
    • pp.125-132
    • /
    • 2012
  • The removal of Cd(II) and Cu(II) from aqueous solution by an agricultural solid waste biomass prepared from Moringa oleifera bark (MOB) was investigated. The biosorbent was characterized by Fourier transform infrared spectroscopy and elemental analysis. Furthermore, the effect of initial pH, contact time, biosorbent dosage, initial metal ion concentration and temperature on the biosorption of Cd(II) and Cu(II) were studied using the batch sorption technique. Kinetic studies indicated that the biosorption process of the metal ions followed the pseudo-second order model. The biosorption data was analyzed by the Langmuir, Freundlich, Dubinin-Radushkevich, and Temkin isotherm models. Based on the Langmuir isotherm, the maximum biosorption capacities for Cd(II) and Cu(II) onto MOB were 39.41 and 36.59 mg/g at 323 K, respectively. The thermodynamic parameters, Gibbs free energy (${\Delta}G^o$), enthalpy (${\Delta}H^o$), and entropy (${\Delta}S^o$) changes, were also calculated, and the values indicated that the biosorption process was endothermic, spontaneous and feasible in the temperature range of 303-323 K. It was concluded that MOB powder can be used as an effective, low cost, and environmentally friendly biosorbent for the removal of Cd(II) and Cu(II) ions from aqueous solution.

Applicability Assessment of Steel Slag as Reactive Capping Material for Blocking Phosphorus Release from Marine Sediment (해양 퇴적물에서 인 용출 차단을 위한 반응성 피복 소재로서 제강슬래그의 적용성 검토)

  • Jo, Sung-Wook;Park, Seong-Jik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.3
    • /
    • pp.11-17
    • /
    • 2014
  • We investigated the applicability of steel slag as a capping material in order to minimize phosphorus(P) release into seawater. Steel slag is a byproduct from the iron and steel industries and the use of steel slag has some advantages in respect of both cost and environmental concern. P removal by steel slag were studied in a batch system with respect to changes in contact time and initial concentration. Kinetic adsorption data were described well by pseudo 2nd order model, indicating rate limiting step for P adsorption to steel slag is chemical sorption. Equilibrium adsorption data fitted well to Langmuir isotherm model which describes for single layer adsorption. The maximum P adsorption capacity of steel slag was 7.134 mg-P/L. Increasing the depth of steel slag produced a positive effect on interruption of P release. More than 3 cm of steel slag was effective for blocking P release and 5 cm of steel slag was recommended as the depth for capping of P contaminated marine sediments. Increasing P concentration and flow rate had a negative effect on P removal ratio. It was concluded that the steel slag has a potential capping material for blocking P release from marine sediments.

Effects of Iron on Arsenic Speciation and Redox Chemistry in Acid Mine Water

  • Bednar A.J.;Garbarino J.R.;Ranville J.F.;Wildeman T.R.
    • Proceedings of the KSEEG Conference
    • /
    • 2004.12a
    • /
    • pp.9-28
    • /
    • 2004
  • Concern about arsenic is increasing throughout the world, including areas of the United States. Elevated levels of arsenic above current drinking-water regulations in ground and surface water can be the result of purely natural phenomena, but often are due to anthropogenic activities, such as mining and agriculture. The current study correlates arsenic speciation in acid mine drainage and mining influenced water with the important water-chemistry properties Eh, pH, and iron(III) concentration. The results show that arsenic speciation is generally in equilibrium with iron chemistry in low pH AMD, which is often not the case in other natural-water matrices. High pH mine waters and groundwater do not 짐ways hold to the redox predictions as well as low pH AMD samples. The oxidation and precipitation of oxyhydroxides depletes iron from some systems, and this also affects arsenite and arsenate concentrations differently through sorption processes.

  • PDF

Kinetics of water vapor adsorption by vacuum-dried jujube powder

  • Lee, Jun Ho;Zuo, Li
    • Food Science and Preservation
    • /
    • v.24 no.4
    • /
    • pp.505-509
    • /
    • 2017
  • Water vapor adsorption kinetics of vacuum-dried jujube powder were investigated in temperature and relative humidity ranges of 10 to $40^{\circ}C$ and 32 to 75%, respectively. Water vapor was initially adsorbed rapidly and then reached equilibrium condition slowly. Reaction rate constant for water vapor adsorption of vacuum-dried jujube powder increased with an increase in temperature. The temperature dependency of water activity followed the Clausius-Clapeyron equation. The net isosteric heat of sorption increased with an increase in water activity. Good straight lines were obtained with plotting of $1/(m-m_0)$ vs. 1/t. It was found that water vapor adsorption kinetics of vacuum-dried jujube powder was accurately described by a simple empirical model, and temperature dependency of the reaction rate constant followed the Arrhenius-type equation. The activation energy ranged from 50.90 to 56.00 kJ/mol depending on relative humidity. Arrhenius kinetic parameters ($E_a$ and $k_0$) for water vapor adsorption by vacuum-dried jujube powder showed an effect between the parameters with the isokinetic temperature of 302.51 K. The information on water vapor adsorption kinetics of vacuum-dried jujube powder can be used to establish the optimum condition for storage and processing of jujube.