• Title/Summary/Keyword: Sorption equilibrium

Search Result 203, Processing Time 0.032 seconds

Utilization of Corynebacterium glutamicum Biomass as a Regenerable Biosorbent for Removal of Reactive Dyes from Aqueous Solution (반응성 염료 제거를 위한 재생 가능한 흡착제로서 Corynebacterium glutamicum 바이오매스의 이용)

  • Won, Sung -Wook;Choi, Sun Beom;Han, Min Hee;Yun, Yeoung-Sang
    • Korean Chemical Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.542-547
    • /
    • 2005
  • Biosorption is considered to be a promising alternative to replace or supplement the present methods for the treatment of dye-containing wastewater. In this study, the protonated biomass of Corynebacterium glutamicum was evaluated for its potential to remove two types of reactive dyes (Reactive Red 4, Reactive Blue 4) from aqueous solution. The uptakes of dyes were enhanced with decrease in the solution pH, which was likely because the biomass functional groups increased at acidic pH and the positively charged sites could bind the negatively charged sulfonate group ($dye-SO_3^-$) of dye molecules. An equilibrium state was practically achieved in 10 hr. The Langmuir sorption model was used for the mathematical description of the sorption equilibrium. The maximum sorption capacities of C. glutamicum biomass for Reactive Red 4 and Reactive Blue 4 were estimated to 112.36 mg/g and 263.16 mg/g at pH 1, and 71.94 mg/g and 155.88 mg/g at pH 3.

Radionuclides Transport from the Hypothetical Disposal Facility in the KURT Field Condition on the Time Domain (KURT 부지 환경에 위치한 가상의 처분 시설에서 누출되는 방사성 핵종의 이동을 Time Domain에서 해석하는 방법에 관한 연구)

  • Hwang, Youngtaek;Ko, Nak-Youl;Choi, Jong Won;Jo, Seong-Seock
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.4
    • /
    • pp.295-303
    • /
    • 2012
  • Based on the data observed and analyzed on a groundwater flow system in the KURT (KAERI Underground Research Tunnel) site, the transport of radionuclides, which were assumed to be released at the supposed position, was calculated on the time-domain. A groundwater pathway from the release position to the surface was identified by simulating the groundwater flow model with the hydrogeological characteristics measured from the field tests in the KURT site. The elapsed time when the radionuclides moved through the pathway is evaluated using TDRW (Time Domain Random Walk) method for simulating the transport on the time-domain. Some retention mechanisms, such as radioactive decay, equilibrium sorption, and matrix diffusion, as well as the advection-dispersion were selected as the factors to influence on the elapsed time. From the simulation results, the effects of the sorption and matrix diffusion, determined by the properties of the radionuclides and underground media, on the transport of the radionuclides were analyzed and a decay chain of the radionuclides was also examined. The radionuclide ratio of the mass discharge into the surface environment to the mass released from the supposed repository did not exceed $10^{-3}$, and it decreased when the matrix diffusion were considered. The method used in this study could be used in preparing the data on radionuclide transport for a safety assessment of a geological disposal facility because the method could evaluate the travel time of the radionuclides considering the transport retention mechanism.

Identification of Sorption Characteristics of Cesium for the Improved Coal Mine Drainage Treated Sludge (CMDS) by the Addition of Na and S (석탄광산배수처리슬러지에 Na와 S를 첨가하여 개량한 흡착제의 세슘 흡착 특성 규명)

  • Soyoung Jeon;Danu Kim;Jeonghyeon Byeon;Daehyun Shin;Minjune Yang;Minhee Lee
    • Economic and Environmental Geology
    • /
    • v.56 no.2
    • /
    • pp.125-138
    • /
    • 2023
  • Most of previous cesium (Cs) sorbents have limitations on the treatment in the large-scale water system having low Cs concentration and high ion strength. In this study, the new Cs sorbent that is eco-friendly and has a high Cs removal efficiency was developed by improving the coal mine drainage treated sludge (hereafter 'CMDS') with the addition of Na and S. The sludge produced through the treatment process for the mine drainage originating from the abandoned coal mine was used as the primary material for developing the new Cs sorbent because of its high Ca and Fe contents. The CMDS was improved by adding Na and S during the heat treatment process (hereafter 'Na-S-CMDS' for the developed sorbent in this study). Laboratory experiments and the sorption model studies were performed to evaluate the Cs sorption capacity and to understand the Cs sorption mechanisms of the Na-S-CMDS. The physicochemical and mineralogical properties of the Na-S-CMDS were also investigated through various analyses, such as XRF, XRD, SEM/EDS, XPS, etc. From results of batch sorption experiments, the Na-S-CMDS showed the fast sorption rate (in equilibrium within few hours) and the very high Cs removal efficiency (> 90.0%) even at the low Cs concentration in solution (< 0.5 mg/L). The experimental results were well fitted to the Langmuir isotherm model, suggesting the mostly monolayer coverage sorption of the Cs on the Na-S-CMDS. The Cs sorption kinetic model studies supported that the Cs sorption tendency of the Na-S-CMDS was similar to the pseudo-second-order model curve and more complicated chemical sorption process could occur rather than the simple physical adsorption. Results of XRF and XRD analyses for the Na-S-CMDS after the Cs sorption showed that the Na content clearly decreased in the Na-S-CMDS and the erdite (NaFeS2·2(H2O)) was disappeared, suggesting that the active ion exchange between Na+ and Cs+ occurred on the Na-S-CMDS during the Cs sorption process. From results of the XPS analysis, the strong interaction between Cs and S in Na-S-CMDS was investigated and the high Cs sorption capacity was resulted from the binding between Cs and S (or S-complex). Results from this study supported that the Na-S-CMDS has an outstanding potential to remove the Cs from radioactive contaminated water systems such as seawater and groundwater, which have high ion strength but low Cs concentration.

Influence of Acid and Heat Treatment on the Removal of Fluoride by Red Mud (Red Mud의 산처리 및 열처리가 불소 제거에 미치는 영향)

  • Kang, Ku;Nyakunga, Expedito;Kim, Young-Kee;Park, Seong-Jik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.4
    • /
    • pp.210-217
    • /
    • 2015
  • Fluoride removal by acid and heat treated red mud were studied in batch and column system regarding contact time, initial concentration, pH, adsorbent dose, and filter depth. The results showed that acid treated with 0.8 M HCl, had highest adsorption capacity of fluoride and adsorption capacity decreased as heat treatment temperature increased. Sorption equilibrium reached in 30 min at a initial concentration of 50 mg-F/L but 1 h was required to reach the sorption equilibrium at the initial concentration of 500 mg-F/L by 0.8 M acid treated red mud (0.8 M-ATRM). Equilibrium adsorption data were fitted well to Langmuir isotherm model with maximum fluoride adsorption capacity of 23.162 mg/g. The fluoride adsorption decreased as pH increased due to the fluoride competition for favorable adsorption site with $OH^-$ at higher pH. Removal percentage was increased but the amount of adsorption per unit mass decreased by adding the amount of 0.8 M-ATRM. It was concluded that the 0.8 M-ATRM could be used as a potential adsorbent for the fluoride removal from aqueous solutions because of its high fluoride adsorption capacity and low cost.

The adsorption-desorption behavior of strontium ions with an impregnated resin containing di (2-ethylhexyl) phosphoric acid in aqueous solutions

  • Kalal, Hossein Sid;Khanchi, Ali Reza;Nejatlabbaf, Mojtaba;Almasian, Mohammad Reza;Saberyan, Kamal;Taghiof, Mohammad
    • Advances in environmental research
    • /
    • v.6 no.4
    • /
    • pp.301-315
    • /
    • 2017
  • An Amberlite XAD-4 resin impregnated with di(2-ethylhexyl)phosphoric acid was prepared and its adsorption-desorption behaviors with Sr(II) ions under various conditions was examined. The resin was characterized by fourier transform infrared and thermal analysis techniques. The effects contact time, temperature, pH, interfering ions and eluants were studied. Results showed that adsorption of Sr (II) well fitted with pseudo-second-order kinetic model. The equilibrium adsorption data of Sr (II) on the impregnated resin were analyzed by Jossens, Weber-van Vliet, Redlich-Peterson and Fritz-Schlunder models to find out desirable equilibrium condition. Among them, the Fritz-Schlunder model best fitted to the experimental data. The maximum sorption capacity of impregnated resin amounted to 0.45 mg/ g at pH 8.0 and $20^{\circ}C$.

Removal of Cu (II) from aqueous solutions using magnetite: A kinetic, equilibrium study

  • Kalpakli, Yasemen
    • Advances in environmental research
    • /
    • v.4 no.2
    • /
    • pp.119-133
    • /
    • 2015
  • Water pollution means that the physical, chemical and biological properties of water are changing. In this study, adsorption was chosen as the treatment method because it is an eco-friendly and low cost approach. Magnetite is a magnetic material that can synthesize chemical precipitation. Magnetite was used for the removal of copper in artificial water samples. For this purpose, metal removal from water dependent on the pH, initial concentration of metal, amount of adsorbent and effect of sorption time were investigated. Magnetite was characterized using XRD, SEM and particle size distribution. The copper ions were determined by atomic absorption spectrometry. The adsorption of copper on the magnetite was studied in a batch process, with different aqueous solutions of Cu (II) at concentrations ranging from 10 to $50mg\;l^{-1}$. Optimum conditions for using magnetite were found to be concentration of $10mg\;L^{-1}$, pH: 4.5, contact time: 40 min. Optimum adsorbent was found to be 0.3 gr. Furthermore, adsorption isotherm data were analyzed using the Langmuir and Freundlich equations. The adsorption data fitted well with the Freundlich ($r^2=0.9701$) and Langmuir isotherm ($r^2=0.9711$) equations. Kinetic and equilibrium aspects of the adsorption process were studied. The time-dependent Cu (II) adsorption data were described well by a pseudo-second-order kinetic model.

Estimation of Cadmium Removal Capacity on Furnace Slag in the Change of Initial Concentration and pH (초기농도와 pH 조건의 변화에 따른 제강슬래그의 카드뮴 제거능 평가)

  • Lee, Gwang-Hun;Kim, Eun-Hyup;Park, Jun-Boum;Oh, Myoung-Hak
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1006-1011
    • /
    • 2010
  • This study was focused on the reactivity of furnace slag against cadmium to design the vertical drain method with reactive column for improving contaminated sea shore sediment. The removal capacity of furnace slag was analyzed using pseudo-second-order model. And the effective parameters of removal test were initial concentration and initial pH. According to equilibrium removal amount and reactive constant calculated by pseudo-second-order model, the removal capacity was analyzed. Equilibrium removal amount of furnace slag was linearly increased as increasing intial cadmium concentration. Because the pH was around 11, the removal mechanism of furnace slag could be both sorption and precipitation. Therefore the removal amount was increased due to initial concentration. pH was increased to around 11 in the case of "No treat", but the pH were 3.8 in the case of "HAc added" and 0.7 in the case of "HCl added". The removal amount was different 4.8, 1.19 and 0.27 mg/g. This results show the pH was major factor to remove cadmium using furnace slag.

  • PDF

Prediction of Moisture Migration of Concrete Including Internal Vaporization in Fire (화재시 내부증발을 고려한 콘크리트의 수분이동)

  • Lee, Tae-Gyu
    • Fire Science and Engineering
    • /
    • v.23 no.5
    • /
    • pp.17-23
    • /
    • 2009
  • Moisture evaporates, when concrete is exposed to fire, not only at concrete surface but also at inside the concrete to adjust the equilibrium and transfer properties of moisture. The equilibrium properties of moisture are described by means of water vapor sorption isotherms, which illustrate the hysteretical behavior of materials. In this paper, the prediction method of the moisture distribution inside the concrete members at fire is presented. Finite element method is employed to facilitate the moisture diffusion analysis for any position of member. And the moisture diffusivity model of high strength concrete by high temperature is proposed. To demonstrate the validity of this numerical procedure, the prediction by the proposed algorithm is compared with the test result of other researcher. The proposed algorithm shows a good agreement with the experimental results including the vaporization effect inside the concrete.

A Comparison of the IAS and Langmuir Models for Multisolute Adsorption of Organic Cowlpounds in Soil (유기화합물들이 혼합상태에서 토양입자에 흡착하는 정도를 IAS와 Langmuir Model을 이용한 예측비교연구)

  • 윤춘경
    • Geotechnical Engineering
    • /
    • v.11 no.2
    • /
    • pp.121-138
    • /
    • 1995
  • The Langmuir competitive model and the IAS(ideal adsorption solution) model were eveluated and compared in a multisolute adsorption study using five organic compounds (phenol, 2, 4-dichlorophenol, 2, 4, 6-trichlorophenot brucine, and thiourea) and two soils. The chemicals were evaluated individually and in mixtures. In general, the IfS model predicted the equilibrium concentration of a chemical in a mixture better than the Langmuir model. The Langmuir model underestimated the sorption of phenol when the concentration of another compound in a mixture with phenol was high. Neither of the models predicted satisfactorily the equilibrium concentration of thiourea in the mixtures. Thiourea is an aliphatic compound while the other four chemicals are aromatic compounds.

  • PDF

Sorption of Ni(II), Cu(II) and Fe(III) ions from Aqueous Solutions Using Activated Carbon (활성탄소를 이용한 수용액으로부터의 Ni(II), Cu(II) 그리고 Fe(III) 이온의 흡착)

  • Hanafi, H.A.;Hassan, H.S.
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.5
    • /
    • pp.533-540
    • /
    • 2010
  • An activated carbon was tested for its ability to remove transition metal ions from aqueous solutions. Physical, chemical and liquid-phase adsorption characterizations of the carbon were done following standard procedures. Studies on the removal of Ni(II), Cu(II) and Fe(III) ions were attempted by varying adsorbate dose, pH of the metal ion solution and time in batch mode. The equilibrium adsorption data were fitted with Freundlich and Langmuir and the isotherm constants were evaluated, equilibrium time of the different three metal ions were determined. pH was found to have a significant role to play in the adsorption. The processes were endothermic and the thermodynamic parameters were evaluated. Desorption studies indicate that ion-exchange mechanism is operating.