• Title/Summary/Keyword: Soot control

Search Result 74, Processing Time 0.025 seconds

Investigation of Soot Formation in a D.I. Diesel Engine by Using Laser Induced Scattering and Laser Induced Incandescence

  • Lee, Ki-Hyung;Chung, Jae-Woo;Kim, Byung-Soo;Kim, Sang-Kwon
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.7
    • /
    • pp.1169-1176
    • /
    • 2004
  • Soot has a great effect on the formation of PM (Particulate Matter) in D.I. (Direct Injection) Diesel engines. Soot in diesel flame is formed by incomplete combustion when the fuel atomization and mixture formation were poor. Therefore, the understanding of soot formation in a D.I. diesel engine is mandatory to reduce PM in exhaust gas. To investigate soot formation in diesel combustion, various measurements have been performed with laser diagnostics. In this study, the relative soot diameter and the relative number density in a DJ. engine was measured by using LIS (Laser Induced Scattering) and LII (Laser Induced Incandescence) methods simultaneously which are planar imaging techniques. And a visualization D.I. diesel engine was used to introduce a laser beam into the combustion chamber and investigate the diffusion flame characteristics. To find the optimal condition that reduces soot formation in diesel combustion, various injection timing and the swirl flow in the cylinder using the SCV (Swirl Control Valve) were applied. From this experiment, the effects of injection timing and swirl on soot formation were established. Effective reduction of soot formation is possible through the control of these two factors.

Electrical characteristics of soot particles in a LPG diffusion flame and particle size change by electric fields (LPG 확산화염내 매연입자의 전기적 특성 및 전기장에 의한 입자 크기 변화)

  • Park, Jong-In;Ji, Jun-Ho;Hwang, Jeong-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.10
    • /
    • pp.1326-1338
    • /
    • 1997
  • Electrical characteristics of soot particles in a LPG diffusion flame were studied for the control of soot particle coagulation. When a DC voltage was applied between two electrodes installed parallel to gas flow, ionic wind effect caused soot deposition on the cathode, implying that most of the soot particles were positively charged. Soot deposit on the cathode linearly increased and was saturated with respect to the strength of the applied voltage. The possibility of applying an AC voltage to enhance the particle coagulation was then investigated and the efficiency of the size control was checked with transmission electron microscope photographs. For the amplitude of 2 kV AC field, primary (spherical) soot particle size decreased from 30 ~ 40 nm to around 20 nm when the frequency of the applied AC voltage was 60 Hz and higher. Collisions between the soot particles in such a selected AC condition could lead to the formation of much bigger agglomerates of roughly 1-5 .mu.m in size.

A Flame Study of Soot Deposition and Reentrainment in Application to Control of Diesel Soot Emission (디젤엔진 관련 Soot 부착 및 재유입에 관한 화염에서의 연구)

  • Kim, Seong-Geun;Park, Jong-In
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.8
    • /
    • pp.2626-2636
    • /
    • 1996
  • A study of soot deposition and reentrainment was carried out both theoretically and experimentally to understand behavior of soot formed by incomplete combustion in a diesel engine. Theoretically, soot deposition on engine cylinder wall and/or piston head was studied with a stagnation point flow approximation. Soot reentrainment occurred upon exhaust gas blowdown was also studied by assuming a long-normal shear velocity distribution. Experimentally, a LPG$O_2/N_2$ flame impinging on a disk, produced by a concentric tubular burner, was chosen as deposition configuration and a shear flow unit with compressed air was installed for the study of reentrainment. For selected flame configuration, soot deposition measurements were conducted and showed that the dominant deposition mechanism was thermophoresis. Distributions of gas temperature and soot number density were estimated by combining data obtained by a B-type thermocouple with a thermophoretic transport theory. Disk temperature distributions were directly measured using a K-type thermocouple. Soot size and morphology were estimated from a TEM photograph. Ratios of soot deposit to reentrained amount were measured for a wide range of shear flow velocities, which showed that the reentrainment model was reasonable.

The Experimental Investigations of Recirculated Exhaust Gas on Exhaust Emissions in a Diesel Engine

  • Kim, Hyeong-Nam;Bae, Myeong-Wan;Park, Jae-Yun
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.11
    • /
    • pp.1588-1598
    • /
    • 2001
  • The effects of recirculated exhaust gas on the characteristics of NOx and soot emissions under a wide range of engine loads were experimentally investigated by using a four-cycle, four-cylinder, sw irl chamber type, water-cooled diesel engine operating at three engine speeds. The purpose of this study was to develop the EGR-control system for reducing NOx and soot emissions simultaneously in diesel engines. The EGR system is used to reduce NOx emissions, and a novel diesel soot removal device with a cylinder-type scrubber for the experiment system was specially designed and manufactured to reduce soot contents in the recirculated exhaust gas to the intake system of the engine. The experiments were performed at the fixed fuel injection timing of 4$^{\circ}$ ATDC regardless of experimental conditions. It was found that soot emissions in exhaust gases were reduced by 20 to 70% when the scrubber was applied in the range of the experimental conditions, and that NOx emissions decreased markedly, especially at higher loads, while soot emissions increased owing to the decrease in intake and exhaust oxygen concentrations, and the increase in equivalence ratio as the EGR rate is elevated.

  • PDF

Experimental Study on the Soot Formation Characteristics of Alkane-based Single Fuel Droplet (알케인계 단일 연료 액적의 Soot 생성 특성에 관한 실험적 연구)

  • Lim, Young Chan;Suh, Hyun Kyu
    • Journal of ILASS-Korea
    • /
    • v.22 no.2
    • /
    • pp.80-86
    • /
    • 2017
  • The soot formation characteristics of various alkane-based single fuel droplets were studied in this work. Also, This study was performed to provide the database of the soot behavior and formation of alkane-based single fuel droplet. The experimental conditions were set to 1.0 atm of ambient pressure ($P_{amb}$), 21% of oxygen concentration ($O_2$) and 79% of nitrogen concentration ($N_2$). Combustion and soot formation of single fuel droplet was visualized by visualization system with high speed camera. At the same time, ambient pressure, oxygen concentration and nitrogen concentration were maintained by ambient condition control system. Soot formation characteristics was analyzed and compared on the basis of intensity ratio ($I/I_0$) of background image. The results of toluene fuel droplet showed the largest soot generation. Soot volume fraction ($f_v$) was almost the same under the identical fuel types regardless of various initial droplet diameter ($d_0$) since thermophoretic flux was not much changed under the same ambient conditions.

Effect of Ambient Conditions on the Soot Generation of Decane Fuel Droplet (분위기 조건이 Decane 액적의 Soot 생성에 미치는 영향)

  • Lim, Young Chan;Suh, Hyun Kyu
    • Journal of ILASS-Korea
    • /
    • v.19 no.4
    • /
    • pp.211-215
    • /
    • 2014
  • The main purpose of this study is to provide basic information of droplet soot generation of decane fuel. To achieve this, this paper presents the experimental results on the decane droplet combustion conducted under various ambient pressure($P_{amb}$), and oxygen concentration($O_2$) conditions. At the same time, the experimental study was conducted in terms of soot volume fraction($f_v$) and its maximum value. Also, visualization of single fuel droplet was conducted by high resolution CCD camera and ambient pressure($P_{amb}$) and oxygen concentration($O_2$) was changed by control system. It was revealed that higher ambient pressure($P_{amb}$), and oxygen concentration($O_2$) enhanced the soot generation and improved the maximum soot volume fraction( $f_v$).

Effect of Initial Diameter on the Soot Generation of Toluene Fuel Droplet (초기 직경 변화가 Toluene 액적의 Soot 생성에 미치는 영향)

  • Lim, Young Chan;Suh, Hyun Kyu
    • Journal of ILASS-Korea
    • /
    • v.20 no.4
    • /
    • pp.261-267
    • /
    • 2015
  • The main purpose of this study is to provide the information of soot generation of toluene fuel droplet. To achieve this, this paper provides the experimental results on the different initial diameter of toluene droplet combustion characteristics conducted under equivalent ambient pressure ($P_{amb}$) and oxygen concentration ($O_2$) conditions. Visualization of single fuel droplet was performed with high resolution CCD camera and visualization system. At the same time, ambient pressure ($P_{amb}$) and oxygen concentration ($O_2$) were maintained by ambient condition control system. Soot volume fraction ($f_v$) was analyzed and compared on the basis of intensity ratio ($I/I_0$) of background image. The result of soot generation was almost the same regardless of initial droplet diameter since thermophoretic flux is not much changed under the same ambient conditions. Soot standoff ratio (SSR) of 2 mm diameter showed unstable variation characteristics due to the short available measuring time.

The Characteristics of Exhausted Soot Particles from a Common-Rail Direct Injection Diesel Engine by TIRE-LII (커먼레일 직접분사식 디젤엔진에서 시분해 레이저 유도 백열법을 이용한 매연입자의 배출 특성)

  • Kim, Gyu-Bo;Han, Hwi-Young;Chang, Young-June;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.5
    • /
    • pp.78-85
    • /
    • 2007
  • Recently, diesel vehicles have been increased and their emission standards have been getting strict. The emission of diesel vehicles contains numerous dangerous compounds, especially particulate matters cause a serious environmental pollutant and affect to human health seriously. Thousands of studies have already reported that particulate matters are associated with respiratory and cardiovascular diseases, and death. Due to these, it is necessary to measure the soot concentration and soot particle size in laboratory flames or practical engines to recognize the soot formation, and develop the control strategies for soot emission. In this study, the characteristics of exhausted soot particle size and volume fraction from 2.0L CRDI diesel engine have been investigated as varying engine speed and load. Laser induced incandescence has been used to measure soot concentration. Time-resolved laser induced incandescence has been used to determine soot particle size in the engine. The soot volume fraction is increased as increasing engine load but soot volume fraction is decreased as increasing engine speed. The primary particle size is distributed about $35nm{\sim}60nm$ at each experimental conditions.

A Study on the Effects of the Swirl Flow on the Distribution of Soot in the D.I. Diesel Engine (스월 유동이 직분식 디젤엔진 내의 Soot 분포에 미치는 영향에 관한 연구)

  • Lee, Gi-Hyeong;Jeong, Jae-U;Lee, Chang-Sik;Park, Hyeon-Jong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.3
    • /
    • pp.458-464
    • /
    • 2002
  • Recently, many researches have been performed to improve performances of the combustion and emission in the D.I.Diesel engine. Especially reduction of the soot formation in tole combustion chamber is the essential to acquire the improvement of the emission performance. These emission of the diesel combustion is effected by the characteristics of air-fuel mixing. Thus, in this study, the distribution of soot in the diesel combustion is measured by LII(laser induced incandescence) and LIS(Laser induced scattering) method. From this experimental results, it is confirmed that the swirl flow intensified by SCV(swirl control valve) is effective on the reduction of soot in the combustion chamber.

Soot Reduction in Diffusion Flames Using Dielectric Barrier Discharge (유전체 방전을 이용한 확산화염에서의 매연저감 특성)

  • Cha, Min-Suk;Kim, Kwan-Tae;Chung, Suk-Ho;Lee, Sang-Min
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.27-32
    • /
    • 2003
  • The effect of non-thermal plasma on diffusion flames in co-flow jets has been studied experimentally by adopting a dielectric barrier discharge technique. The generation of streamers was enhanced with a flame due to increased reduced electric fields by high temperature burnt gas and the abundance of ions in the flame region. The effect of streamers on flame behavior reveals that the flame length was significantly decreased as the applied voltage increased and the yellow luminosity by the radiation of soot particles was also significantly reduced. The formation of PAH and soot was influenced appreciably by the non-thermal plasma, while the flame temperature and the concentration of major species were not influence much with the plasma generation. The results demonstrated that the application of non-thermal plasma can be a viable technique in controlling soot generation in flames with low power consumption in the order of 1 W.

  • PDF