• 제목/요약/키워드: Soot Emission

검색결과 187건 처리시간 0.024초

Ag 담지된 LaSrCoFeO3 섬유상 perovskite 촉매의 탄소 입자상 물질의 산화반응 (Ag-Loaded LaSrCoFeO3 Perovskite Nano-Fibrous Web for Effective Soot Oxidation)

  • 이찬민;전유권;황호정;지윤성;권오찬;전옥성;설용건
    • Korean Chemical Engineering Research
    • /
    • 제57권4호
    • /
    • pp.584-588
    • /
    • 2019
  • 디젤엔진 시스템은 미세먼지 배출의 엄격해진 저감/제어 기준을 충족하기 위해서 산화촉매는 매우 중요한 기술 중에 하나이다. 본 연구에서는 효율적인 soot산화의 촉매로 Ag 나노입자가 loading된 $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$ 섬유상 web 촉매를 제시하였다. 제조된 촉매는 FE-SEM, EDS mapping, XRD, XPS 분석을 통해 특성을 평가하였다. Soot 산화성능측정결과 Ag의 효율적인 촉매특성과 증가된 soot입자와 표면의 접촉면적으로 인하여 50% 산화온도 평가($T_{50}=490^{\circ}C$)에서 자연적인 산화보다 $151^{\circ}C$ 가속화된 것을 확인하였다. 따라서 Ag가 loading된 촉매와 3차원적인 web 구조는 soot 산화에 효율적인 촉매후보군으로 확인하였다.

다공 세라믹 오일 연소기의 온도분포 및 CO, NOx 배출 특성에 관한 실험적 연구 (Experimental Study on the Temperature Distribution and CO, NOx Emission of Porous Ceramic Oil Burner)

  • 조제동;강재호;임인권
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.398-403
    • /
    • 2000
  • Experimental study on the porous ceramic burner for oil burning has been performed. Temperature profile of the combustor and CO and NOx emission have been obtained for with and without porous ceramic plate. It is found that very uniform and high temperature region with porous ceramic plate can be realized due to high radiation emission from the plate and also obtained lower CO and soot particulate emission, when compared to the conventional burner. When this burning method is applied to conventional boiler of small heating capacity, it is found that near 6 and 7 percent increase in thermal efficiency could be obtained without a proper calibration for optimization.

  • PDF

압축착화 엔진에서 가솔린과 디젤연료의 연소 특성에 관한 연구 (A Study on Combustion Characteristics of Gasoline and Diesel Fuels in a Compression Ignition Engine)

  • 김기현
    • 동력기계공학회지
    • /
    • 제21권1호
    • /
    • pp.63-69
    • /
    • 2017
  • The combustion characteristics of gasoline and diesel were tested in a compression ignition engine. Both fuels were used with same common rail injection system. Combustion experiment showed that low load condition of 0.45 MPa IMEP (indicated mean effective pressure) was tested in metal and optical engines. The gasoline combustion showed higher hydrocarbon and carbon monoxide emissions but lower soot emission compared with diesel combustion. NOx emissions were very high at late injection timing but significantly decreased at early injection timing due to the lean combustion resulted from vigorous mixing process. Direct combustion visualization showed that the diesel combustion was dominated by diffusion combustion exhibiting soot incandescence and the gasoline combustion was mostly consisted of premixed combustion showing blue chemiluminescence.

New Technology with Porous Materials: Progress in the Development of the Diesel Vehicle Business

  • Ohno, Kazushige
    • 한국세라믹학회지
    • /
    • 제45권9호
    • /
    • pp.497-506
    • /
    • 2008
  • The long time of twenty years has passed since Diesel Particulate Filter (DPF) was proposed before the practical use. The main factors that DPF has been put to practical use in this time, are the same time proposal of the evaluation method of SiC porous materials linked to he performance on the vehicle, and that the nature of thermal shock required for the soot regeneration (combustion of soot) in the DPF is different from the conventional requirement for the rather rapid thermal shock. For the requirements, these includ demonstrating utmost the characteristic of SiC's high thermal conductivity, and overcoming the difficulty of thermal expansion of SiC-DPF by dividing the filter into segments binding with the cement of lower Young's modulus, and the innovation of technology around the diesel exhaust system such as Common-Rail system. As the results of these, the cumulative shipments of SiC-DPF have reached about 5 million, and it goes at no claim in the market.

EXPERIMENTAL INVESTIGATION AND COMPARISON OF SPRAY AND COMBUSTION CHARACTERISTICS OF GTL AND DIESEL FUELS

  • Kim, K.S.;Beschieru, V.;Jeong, D.S.;Lee, Y.
    • International Journal of Automotive Technology
    • /
    • 제8권3호
    • /
    • pp.275-281
    • /
    • 2007
  • GTL (Gas To Liquid) has the potential to be used in diesel engines as a clean alternative fuel due to advantages in emission reduction, particularly soot reduction. Since the physical properties of GTL fuel differ from those of diesel fuel to some extent, studying how this difference in characteristics of GTL and diesel fuels affects spray and combustion in diesel engines is important. In this study, visual investigation of sprays and flames from GTL and diesel fuels in a vessel simulating diesel combustion was implemented. The effects of various parameters and conditions, such as injection pressure, chamber temperature and pilot injection on liquid-phase fuel length and auto-ignition delay were investigated. It was determined that GTL has a somewhat shorter liquid-phase fuel length, which explains why there is less contact between the fuel liquid-phase and flame for GTL fuel compared to diesel fuel.

분사 조건의 변화가 소형 커먼레일 디젤 엔진의 연소 및 배기 특성에 미치는 영향 (Effect of Injection Parameters on Combustion and Exhaust Emission Characteristics in a Small Common-rail Diesel Engine)

  • 김명윤;이두진;노현구;이제형;이창식
    • 한국자동차공학회논문집
    • /
    • 제12권6호
    • /
    • pp.9-15
    • /
    • 2004
  • The characteristics of combustion and emissions were investigated in a single cylinder DI diesel engine equipped with a common rail injection system. This study presents an experimental study of the effect of engine speed, injection timing, injection pressure and pilot injection timing on the combustion and exhaust emissions. The engine speeds were 1000 and 2000rpm and the corresponding injection pressures were 50 and 100MPa. Experimental results show that NOx emissions decrease with retarded injection timing, while HC and CO emissions increases. Higher injection pressure increases NOx with lower soot emissions. For the case with the pilot injection prior to main injection, the ignition delay is shortened and the premixed combustion ratio decreases. Also NOx and soot emissions are decreased with increase of pilot injection advance.

고속 디젤기관의 배기배출물에 미치는 스크러버형 배기가스 재순환계의 실험적 연구 (Experimental Study on Exhaust Scrubber Type EGR System for High Speed Diesel Engine)

  • 박태인;김태권;홍순철
    • 연구논문집
    • /
    • 통권24호
    • /
    • pp.5-11
    • /
    • 1994
  • EGR is an efficient method for reduction of NOx from diesel exhaust emission since it is simple to install with low cost and effective in its performance however it has demerits such as incresing wear on the moving parts of engines. stainning intake system and deteriorate lubricating oil. In order to reduce the soot contents in the recirculating gas to intake system of the engine, a proper filtering device was desined and manufactered for experiment system. It is aimed to grasp the characteristics of pollutant emissions including SFC on EGR system equipped with soot removal device.

  • PDF

산업용 가스화 용융로를 위한 산소 버너의 개발 (Development of Oxygen Combustion Burner for Industrial Gasification and Smelting Furnace)

  • 배수호;이은도;신현동;김성현;구재회;유영돈
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2005년도 제31회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.170-178
    • /
    • 2005
  • Multi-hole type oxygen combustion burner was developed for industrial gasification and smelting furnace. We investigated characteristics of flame, radiation transfer, and soot emission in the convectional oxygen burner with respect to the feeding condition of fuel and oxygen. Regarding the results of the conventional burner, we designed new burners which have larger fuel consumption rate and radiation heat transfer. We changed the size and hole number and shape of the exit plane of the burner. In addition, the performance of the burner was tested with respect to the feeding condition of the fuel and air: Normal Diffusion flame(NDF) and Inverse Diffusion Flame(IDF). We investigated the flame configuration, radiation heat transfer, and soot formation by using a CCD camera, heat flux meter, and Laser Induced Incadescence(LII), respectively. The stable operating condition was obtained by the flame configuration and the flame of the burner which has dented exit plane was more stable in whole operating conditions. The characteristics of radiative heat transfer were sensitive to the feeding condition of reactants and the flame of 75% primary oxygen and 25% secondary oxygen of the IDF case shows maximum radiation heat transfer. The soot volume fraction of the flame was measured in the axial direction of the flame and the amount of soot volume fraction is proportion to the radiation heat transfer. As a result, we can get the optimal operating condition of the newly designed burner which enhances the characteristics of flame stabilization and radiation heat transfer.

  • PDF

백금담지 알루미나 촉매와 오존 산화제 동시 적용에 의한 탄소 입자상 물질의 저온 산화반응 (Simultaneous Application of Platinum-Supported Alumina Catalyst and Ozone Oxidant for Low-temperature Oxidation of Soot)

  • 이진수;이대원
    • Korean Chemical Engineering Research
    • /
    • 제56권5호
    • /
    • pp.752-760
    • /
    • 2018
  • 경유자동차에서 배출되는 탄소 입자상 물질 연소 온도구간을 낮추는 것은 미세먼지 배출 저감과 내연기관 자동차의 고연비 저배출 성능 구현이라는 측면에서 매우 중요한 기술적 과제 중 하나이다. 본 논문에서는 탄소 입자상 물질의 산화를 위해 오존을 산화제로 이용하고 백금계 산화촉매를 동시에 적용했을 때 관찰되는 $150^{\circ}C$ 부근 저온영역에서의 탄소 입자상 물질 연소반응에 관하여 논했다. 백금계 산화촉매를 적용했을 때 오존에 의한 탄소 입자상 물질의 산화속도를 크게 개선시키지 못했지만 연소반응의 이산화탄소 선택도를 향상시켰으며, 탄소 입자상 물질의 선택적 산화를 위해 고려된 NO의 $NO_2$로의 사전 전환($NO_2$-rich 조건)은 $NO_2$와 오존의 상호 상승작용에 의해 $150^{\circ}C$ 부근 온도영역에서의 탄소상 입자물질 연소성능을 높이는데 효과가 있었다.

직접분사식 디젤기관에서 연료소비율 및 배기배출물 특성에 미치는 바이오디젤유의 영향 - 유채유를 중심으로 - (Effects of Biodiesel Fuel on Characteristics of Specific Fuel Consumption and Exhaust Emissions in DI Diesel Engine - Using Rape Oil -)

  • 임재근;최순열;김석준;조상곤
    • 해양환경안전학회지
    • /
    • 제14권1호
    • /
    • pp.83-87
    • /
    • 2008
  • 산유국으로부터 에너지 독립을 하고 대기오염방지를 위한 배기배출물을 저감시키기 위하여 대체연료에 많은 관심을 가지고 있다. 폐유나 새로운 식물성 기름과 동물성 기름으로부터 생성할 수 있는 바이오디젤유가 압축점화기관인 디젤기관에 구조적인 변화없이 사용될 수 있다. 이 논문에서는 4행정 직접분사식 디젤기관을 이용하여 순수 디젤유와 바이오디젤 혼합유(바이오디젤 10% 및 20% 함유)의 연료소비율과 배기배출물에 미치는 영향을 제시했으며, 특히 실험에 사용된 바이오디젤 연료는 우리 실험실에서 유채유로부터 직접 생산되었다. 이 연구 결과 바이오디젤 혼합유가 디젤유 보다 연료소비율과 질소산화물은 약간 증가 되었고 일산화탄소와 매연은 상당히 감소되었다.

  • PDF