• Title/Summary/Keyword: Sonic Wave

Search Result 110, Processing Time 0.027 seconds

P-Impedance Inversion in the Shallow Sediment of the Korea Strait by Integrating Core Laboratory Data and the Seismic Section (심부 시추코어 실험실 분석자료와 탄성파 탐사자료 통합 분석을 통한 대한해협 천부 퇴적층 임피던스 도출)

  • Snons Cheong;Gwang Soo Lee;Woohyun Son;Gil Young Kim;Dong Geun Yoo;Yunseok Choi
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.3
    • /
    • pp.138-149
    • /
    • 2023
  • In geoscience and engineering the geological characteristics of sediment strata is crucial and possible if reliable borehole logging and seismic data are available. To investigate the characteristics of the shallow strata in the Korea Strait, laboratory sonic logs were obtained from deep borehole data and seismic section. In this study, we integrated and analyzed the sonic log data obtained from the drilling core (down to a depth of 200 m below the seabed) and multichannel seismic section. The correlation value was increased from 15% to 45% through time-depth conversion. An initial model of P-wave impedance was set, and the results were compared by performing model-based, band-limited, and sparse-spike inversions. The derived P-impedance distributions exhibited differences between sediment-dominant and unconsolidated layers. The P-impedance inversion process can be used as a framework for an integrated analysis of additional core logs and seismic data in the future. Furthermore, the derived P-impedance can be used to detect shallow gas-saturated regions or faults in the shallow sediment. As domestic deep drilling is being performed continuously for identifying the characteristics of carbon dioxide storage candidates and evaluating resources, the applicability of the integrated inversion will increase in the future.

Structure and physical properties of Earth Crust material in the Middle of Korean Peninsula(2) : Comparison between elastic Velocity and point-load of core specimen of sedimentary rocks. (한반도 중부권 지각물질의 구조와 물성연구(2) : 퇴적암류 코아시료의 탄성파 속도와 점재하 강도 비교)

  • 송무영;황인선
    • The Journal of Engineering Geology
    • /
    • v.3 no.1
    • /
    • pp.21-37
    • /
    • 1993
  • In order to investigate the correlation of sedimentary rock properties. specific gravity, porosity, water content, sonic wave velodty, and point4oad strength index of core samples of limestones, sandstones and shales were measured. The relationships between density and velocity show $V_p=16300d-38719.3,{\;}V_s1896.4d-29225.1$ of regression equation for sandstones and $Vp=4085d-10264.8,{\;}V_s=3519d-7841.3$ for shales and <$Vp=4085d^2-20747d+303,{\;}V_s=3899d^2-21442d+318$ for limestones. Seismic wave velocity of shales which have high density is lower than that of sandstones, and this seems to be an effect of bedding in shale. P-wave velocity and S-wave velocity of limestones, sandstones and shales show the linear relationships as a whole. The regression equations are respectively calculated V_s=0.26V_p+1041.6m/sec,{\;}V_s=0.43V_p+424.2m/sec,{\;}and{\;}Vs=0.51V_p+261.9m/sec$ and the correlation coefficients of the velocity show r= 0.86 in sandstones, r= 0.75 in limestones and r=0.86 in shales. According to the point4oad strength test for limestones, point4ord strength anisotropy was not so dear even though the specimens show generally the banded structure. Variations of dip angle of bedding whihin the range $30^{\circ}-60^{\circ}$ does not have much influence upon the diametral strength index and axial strength index. From the result of point load test, P-wave velocity increases with point4ord strength index but the regression equations are $V_p=98.5lI{s_d}+4082.1m/sec,{\;}V_p=106.41{s_a}+3954m/sec$ and their correlation coefficient is low.

  • PDF

Isolation and Yield Enhancement of Primo Vessels Inside of Rabbit Lymph Vessels by Using Sound Wave Vibration (음파진동을 이용한 토끼의 림프관내 프리모관 분리와 수득률 향상 특성 연구)

  • Heo, June-Yi;Chung, Ji-Hwan;Choi, Dong-Hee;Lee, Hye-Rie;Noh, Young-Il;Han, Moon-Young;Jeong, Yeon-Chul;Lee, Jae-Yeon;Seo, Kyeong-Ju;Park, Ji-Su;Kim, Nu-Ri;Lee, Kyu-Hwan;Bae, Yu-Mi;Lee, Eun-Sae;Lee, Sang-Suk
    • Korean Journal of Acupuncture
    • /
    • v.30 no.2
    • /
    • pp.122-130
    • /
    • 2013
  • Objectives : The fact that Primo vessel as a new circulatory system exists in the lymphatic vessels of the rabbits which were treated with sound wave vibration therapy is confirmed with the anatomy of rabbit. Isolated Primo vessel is investigated, particularly focused on morphological features. Methods : Before the anatomy, a rabbit in a cage box was laid on the sound wave vibrating apparatus and then is applied by various frequencies and intensities for 30 min with music that a rabbit likes. Results : Isolation and observation of Primo vessel was easier when the lymphatic circular system was applied at a certain frequency and intensity of 7 Hz and 50. The probability of observation for Primo vessel enhanced to 90%. Conclusions : The sound wave therapy by a vibration apparatus is considered necessary as major process to facilitate the reproducible isolation and observation of Primo vessel.

DIFFUSIVE SHOCK ACCELERATION WITH MAGNETIC FIELD AMPLIFICATION AND ALFVÉNIC DRIFT

  • Kang, Hyesung
    • Journal of The Korean Astronomical Society
    • /
    • v.45 no.5
    • /
    • pp.127-138
    • /
    • 2012
  • We explore how wave-particle interactions affect diffusive shock acceleration (DSA) at astrophysical shocks by performing time-dependent kinetic simulations, in which phenomenological models for magnetic field amplification (MFA), Alfv$\acute{e}$nic drift, thermal leakage injection, Bohm-like diffusion, and a free escape boundary are implemented. If the injection fraction of cosmic-ray (CR) particles is ${\xi}$ > $2{\times}10^{-4}$, for the shock parameters relevant for young supernova remnants, DSA is efficient enough to develop a significant shock precursor due to CR feedback, and magnetic field can be amplified up to a factor of 20 via CR streaming instability in the upstream region. If scattering centers drift with Alfv$\acute{e}$n speed in the amplified magnetic field, the CR energy spectrum can be steepened significantly and the acceleration efficiency is reduced. Nonlinear DSA with self-consistent MFA and Alfv$\acute{e}$nic drift predicts that the postshock CR pressure saturates roughly at ~10 % of the shock ram pressure for strong shocks with a sonic Mach number ranging $20{\leq}M_s{\leq}100$. Since the amplified magnetic field follows the flow modification in the precursor, the low energy end of the particle spectrum is softened much more than the high energy end. As a result, the concave curvature in the energy spectra does not disappear entirely even with the help of Alfv$\acute{e}$nic drift. For shocks with a moderate Alfv$\acute{e}$n Mach number ($M_A$ < 10), the accelerated CR spectrum can become as steep as $E^{-2.1}$ - $E^{-2.3}$, which is more consistent with the observed CR spectrum and gamma-ray photon spectrum of several young supernova remnants.

이산 웨이브릿 변환을 이용한 탄성파 주시결정

  • Kim, Jin-Hu;Lee, Sang-Hwa
    • Journal of the Korean Geophysical Society
    • /
    • v.4 no.2
    • /
    • pp.113-120
    • /
    • 2001
  • The discrete wavelet transform(DWT) has potential as a tool for supplying discriminatory attributes with which to distinguish seismic events. The wavelet transform has the great advantage over the Fourier transform in being able to localize changes. In this study, a discrete wavelet transform is applied to seismic traces for identifying seismic events and picking of arrival times for first breaks and S-wave arrivals. The precise determination of arrival times can greatly improve the quality of a number of geophysical studies, such as velocity analysis, refraction seismic survey, seismic tomography, down-hole and cross-hole survey, and sonic logging, etc. provide precise determination of seismic velocities. Tests for picking of P- and S- wave arrival times with the wavelet transform method is conducted with synthetic seismic traces which have or do not have noises. The results show that this picking algorithm can be successfully applied to noisy traces. The first arrival can be precisely determined with the field data, too.

  • PDF

Study of Base DRAG Prediction With Chamber Pressure at Super-Sonic Flow (초음속 유동에서 챔버 압력에 따른 기저항력 변화 예측)

  • Kim, Duk-Min;Nam, Junyeop;Lee, Hyoung Jin;Noh, Kyung-Ho;Lee, Daeyeon;Kang, Dong-Gi
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.11
    • /
    • pp.849-859
    • /
    • 2020
  • The semi-empirical equation and commercial computational tool were used to predict the base drag of a guided missile with free-stream Mach numbers and chamber pressures, and the results were generally agree each other. Differences in flow characteristics and base drags were observed with over/under expansion conditions by the nozzle. Under the over-expansion condition, the base pressure decreased as the expansion fan was generated at upper region of the base, and base pressure decreased further with increasing free-stream Mach number as the expansion becomes strong. Under the under-expansion conditions, a shock wave was generated around the base by the influence of the nozzle flow, which increased the base pressure, and the effect increased as the chamber pressure increased. Under the same chamber pressure condition, as the free-stream Mach number increases, the characteristic that the base pressure decreases as the shock wave generated at the base moves downstream was observed.

Applications of SASW Method to Civil Engineering (토목 공학에서의 SASW 기법의 활용)

  • Song Myung-Jun;Jung Yun-Moon;Lee Young-Nam
    • Geophysics and Geophysical Exploration
    • /
    • v.2 no.4
    • /
    • pp.174-179
    • /
    • 1999
  • Shear wave velocity, one of major elastic constants in the dynamic design for civil structures, is conventionally measured from downhole, crosshole or sonic logging tests. SASW (Spectral Analysis of Surface Waves) method, which overcomes the disadvantage of the in-hole tests, can evaluate subsurface stiffness nondestructively and nonintrusively through measuring surface waves on surface. In this paper, principles of the SASW method are briefly described and the results of various field tests, conducted to investigate the applicability of the method, are summarized. The SASW method was successfully applied in evaluating the effects of dynamic compaction at Inchon international airport site, applied in evaluating the integrity of the lining and sidewall at a testing tunnel located in Mabukri, and applied in detecting thickness of a concrete retaining wall. The results of field tests and the nondestructive and economical characteristics of the method show the promising future of the SASW method in civil engineering projects.

  • PDF

Study of the Unsteady Gas Flow in a Critical Nozzle (임계노즐에서 발생하는 비정상유동에 관한 연구)

  • Kim, Jae-Hyung;Kim, Heuy-Dong;Park, Kyung-Am
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.337-345
    • /
    • 2002
  • The present study addresses a computational result of unsteady gas flow through a critical nozzle. The axisymmetric, unsteady, compressible, Wavier-Stokes equations are solved using a finite volume method that makes use of the second order upwind scheme for spatial derivatives and the multi-stage Runge-Kutta integral scheme for time derivatives. The steady solutions of the governing equation system are validated with the previous experimental data to ensure that the present computational method is valid to predict the critical nozzle flows. In order to simulate the effects of back pressure fluctuations on the critical nozzle flows, an excited pressure oscillation with an amplitude and frequency is assumed downstream of the exit of the critical nozzle. The results obtained show that for low Reynolds numbers, the unsteady effects of the pressure fluctuations can propagate upstream of the throat of critical nozzle, and thus giving rise to the applicable fluctuations in mass flow rate through the critical nozzle, while for high Reynolds numbers, the pressure signals occurring at the exit of the critical nozzle do not propagate upstream beyond the nozzle throat. For very low Reynolds number, it is found that the sonic line near the throat of the critical nozzle remarkably fluctuateswith time, providing an important mechanism for pressure signals to propagate upstream of the nozzle throat, even in choked flow conditions. The present study is the first investigation to clarify the unsteady effects on the critical nozzle flows.

  • PDF

Effects of Blasting Vibrations on Strength and Physical Properties of Curing Concrete (발파진동의 크기가 양생콘크리트의 강도와 물성에 미치는 영향)

  • 박근순
    • Explosives and Blasting
    • /
    • v.16 no.4
    • /
    • pp.18-28
    • /
    • 1998
  • Effects of blasting vibrations on curing concrete have not been well studied. As a result, unreasonable and strong blasting vibration constraints have been placed on blasting when it occur in the vicinity of curing concrete. To study the effects of blasting on curing concrete blocks of $33.3{\times}27.7{\times}16.2cm$ were molded and placed on the quarry. Several sets of concrete blocks were subjected separately to peak vibrations of 0.25, 0.5, 1.0, 5.0 and 10cm/sec. The impulses of blasting vibrations were applied with thirty-minute intervals. Along with unvibrated concrete blocks, the vibrated concrete samples cored with 60.3mm in diameter were measured for elastic moduli, sonic velocity and uniaxial compressive strength. Test results can be summarized as follows; 1. The blasting vibrations between 6 and 8 hours after pour generally lowered on the uniaxial compressive strength of the concrete. 2. A low blasting vibration of 0.25cm/sec did not affect the uniaxial compressive strength. As the magnitude of the blasting vibration increases, compressive strength of concrete is decreased. 3. Physical properties of the P-wave velocity, Young’s modulus, and Poisson's ratio showed a weakly decreasing trend in the concrete blocks vibrated between 6 and 8 hours after pour.

  • PDF

An experimental study on the characteristics of transverse jet into a supersonic flow field (초음속 유동장에서의 충돌제트 특성에 대한 실험적 연구)

  • 박종호;김경련;신필권;박순종;길경섭
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.124-131
    • /
    • 2003
  • When a secondary gaseous flow is injected vertically into a supersonic flow through circular nozzle, a complicated structure of flow field is produced around the injection area. The interaction between the two streams produces a strong bow shock wane on the upstream side of the side-jet. The results show that bow shock wave and turbulent boundary layer interaction induces the boundary layer separation in front of the side-jet. This study is to analyze the structure of flow fields and distribution of surface pressure on the flat plate according to total pressure ratio using a supersonic cold-flow system and also to study the control force of affected side-jet. The nozzle of main flow was designed to have Mach 2.88 at the exit. The injector has a sonic nozzle with 4mm diameter at the exit of the side-jet. In experiments, The oil flow visualization using a silicone oil and ink was conducted in order to analyze the structure of flow fields around the side-jet. The flow fields are visualized using the schlieren method. In this study, a computational fluid dynamic solution is also compared with experimental results.