• Title/Summary/Keyword: Song Mode

Search Result 1,051, Processing Time 0.029 seconds

Evaluation of Ku-band Ground-based Interferometric Radar Using Gamma Portable Radar Interferometer

  • Hee-Jeong, Jeong;Sang-Hoon, Hong;Je-Yun, Lee;Se-Hoon, Song;Seong-Woo, Jung;Jeong-Heon, Ju
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.1
    • /
    • pp.65-76
    • /
    • 2023
  • The Gamma Portable Radar Interferometer (GPRI) is a ground-based real aperture radar (RAR) that can acquire images with high spatial and temporal resolution. The GPRI ground-based radar used in this study composes three antennas with a Ku-band frequency of 17.1-17.3 GHz (1.73-1.75 cm of wavelength). It can measure displacement over time with millimeter-scale precision. It is also possible to adjust the observation mode by arranging the transmitting and receiving antennas for various applications: i) obtaining differential interferograms through the application of interferometric techniques, ii) generation of digital elevation models and iii) acquisition of full polarimetric data. We introduced the hardware configuration of the GPRI ground-based radar, image acquisition, and characteristics of the collected radar images. The interferometric phase difference has been evaluated to apply the multi-temporal interferometric SAR application (MT-InSAR) using the first observation campaigns at Pusan National University in Geumjeong-gu, Busan.

Mechanical behavior of sandstones under water-rock interactions

  • Zhou, Kunyou;Dou, Linming;Gong, Siyuan;Chai, Yanjiang;Li, Jiazhuo;Ma, Xiaotao;Song, Shikang
    • Geomechanics and Engineering
    • /
    • v.29 no.6
    • /
    • pp.627-643
    • /
    • 2022
  • Water-rock interactions have a significant influence on the mechanical behavior of rocks. In this study, uniaxial compression and tension tests on different water-treated sandstone samples were conducted. Acoustic emission (AE) monitoring and micro-pore structure detection were carried out. Water-rock interactions and their effects on rock mechanical behavior were discussed. The results indicate that water content significantly weakens rock mechanical strength. The sensitivity of the mechanical parameters to water treatment, from high to low, are Poisson ratio (𝜇), uniaxial tensile strength (UTS), uniaxial compressive strength (UCS), elastic modulus (E), and peak strain (𝜀). After water treatment, AE activities and the shear crack percentage are reduced, the angles between macro fractures and loading direction are minimized, the dynamic phenomenon during loading is weakened, and the failure mode changes from a mixed tensile-shear type to a tensile one. Due to the softening, lubrication, and water wedge effects in water-rock interactions, water content increases pore size, promotes crack development, and weakens micro-pore structures. Further damage of rocks in fractured and caved zones due to the water-rock interactions leads to an extra load on the adjoining coal and rock masses, which will increase the risk of dynamic disasters.

Modal analysis and multi-objective optimization of lightweight analysis of the main beam of the concrete spreader

  • Zhang, Shiying;Song, Bo;Zhang, Ke;Chen, Hongliang;Zou, Defang;Liu, Chang;Zhu, Chunxia;Li, Dong;Yu, Wenda
    • Computers and Concrete
    • /
    • v.28 no.5
    • /
    • pp.465-478
    • /
    • 2021
  • On the premise of ensuring that the static performance of the concrete spreader is met, the first-order natural frequency of the concrete spreader is increased, and the weight of the main beam is reduced. ANSYS is used as an analysis tool to perform modal analysis on the concrete spreader. The natural frequency, mode shape and modal test verification will be obtained to ensure the accuracy of finite element model analysis. Using the ANSYS designxplorer module, the size of the main beam is set, and the response surface model between the parameter variables and the optimization objective is established according to the experimental design points. Screening algorithm and MOGA algorithm are used to multi-optimize the stress, first-order natural frequency and girder weight, and the optimal solution is obtained by comparison. The results of modal analysis are consistent with those of the experiment, and a set of optimal solutions is obtained through the optimization algorithm. The optimal solution obtained can meet the purpose of increasing the first-order natural frequency of the concrete spreader and reducing the weight of the main beam under the premise of ensuring the overall dynamic and static performance of the concrete spreader.

Full-scale bridge expansion joint monitoring using a real-time wireless network

  • Pierredens Fils;Shinae Jang;Daisy Ren;Jiachen Wang;Song Han;Ramesh Malla
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.4
    • /
    • pp.359-371
    • /
    • 2022
  • Bridges are critical to the civil engineering infrastructure network as they facilitate movement of people, the transportation of goods and services. Given the aging of bridge infrastructure, federal officials mandate visual inspections biennially to identify necessary repair actions which are time, cost, and labor-intensive. Additionally, the expansion joints of bridges are rarely monitored due to cost. However, expansion joints are critical as they absorb movement from thermal effects, loadings strains, impact, abutment settlement, and vehicle motion movement. Thus, the need to monitor bridge expansion joints efficiently, at a low cost, and wirelessly is desired. This paper addresses bridge joint monitoring needs to develop a cost-effective, real-time wireless system that can be validated in a full-scale bridge structure. To this end, a wireless expansion joint monitoring was developed using commercial-off-the-shelf (COTS) sensors. An in-service bridge was selected as a testbed to validate the performance of the developed system compared with traditional displacement sensor, LVDT, temperature and humidity sensors. The short-term monitoring campaign with the wireless sensor system with the internet protocol version 6 over the time slotted channel hopping mode of IEEE 802.15.4e (6TiSCH) network showed reliable results, providing high potential of the developed system for effective joint monitoring at a low cost.

Risk and Improvement Measures of Work from Home in the Post-COVID-19 Era - Focusing on Mental and Physical Issues (포스트 코로나 시대 재택근무의 위험성과 개선방향 - 정신적, 신체적 사안을 중심으로)

  • Tae Soo Eum;Eun Taek Shin;Chang Geun Song
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.3
    • /
    • pp.93-101
    • /
    • 2023
  • The COVID-19 pandemic has significantly impacted how people work, resulting in a massive shift towards working from home or remotely. Work from home has played a critical role in reducing the transmission of COVID-19 by limiting in-person interactions and reducing the density of people in office buildings. It also enabled businesses and organizations to continue operating while keeping their employees safe and healthy. The COVID-19 pandemic accelerated the adoption of work from home in business and organizational sectors worldwide, and it is likely to continue as a preferred mode of work even after the pandemic is over. This shift towards working from home has not only impacted the way people work but also has significant implications for urban development, transportation, and the environment. This study intends to develop measures for addressing potential physical and mental health issues among remotely working employees. Additionally, it identifies the major influencing factors of home workers' health hazards and proposes improvement measures that can be applied to working from home, along with existing laws and prevention methods.

Fabrication and Characteristic Test of Conduction-Cooled Brass Current Leads for a 22.9kV/630A Resistive Superconducting Fault Current Limiter System (22.9kV/630A 저항형 초전도 한류기용 전도-냉각 황동 전류인입선 제작 및 특성 실험)

  • Song, J.B.;Kim, J.H.;Kwon, N.Y.;Kim, Y.W.;Kim, H.M.;Sim, J.;Lee, B.W.;Kim, H.R.;Hyun, O.B.;Lee, H.G.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.3
    • /
    • pp.46-51
    • /
    • 2007
  • The 22.9kV/630A superconducting fault current limiter (SFCL) is developed by the KEPRI-LSIS collaboration group. This resistive SFCL uses three pairs of conduction-cooled current leads. When the SFCL system is in the fault mode. the current flows 20 times more than the steady state. Therefore. it is important that the current lead is designed to have the thermal stability in order to minimize the heat input of the cold-end. This paper presents the design and performance results of a pair of conduction-cooled brass current leads considering both cases that the SFCL system operates at the steady state and the fault current.

Development of machine learning model for automatic ELM-burst detection without hyperparameter adjustment in KSTAR tokamak

  • Jiheon Song;Semin Joung;Young-Chul Ghim;Sang-hee Hahn;Juhyeok Jang;Jungpyo Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.100-108
    • /
    • 2023
  • In this study, a neural network model inspired by a one-dimensional convolution U-net is developed to automatically accelerate edge localized mode (ELM) detection from big diagnostic data of fusion devices and increase the detection accuracy regardless of the hyperparameter setting. This model recognizes the input signal patterns and overcomes the problems of existing detection algorithms, such as the prominence algorithm and those of differential methods with high sensitivity for the threshold and signal intensity. To train the model, 10 sets of discharge radiation data from the KSTAR are used and sliced into 11091 inputs of length 12 ms, of which 20% are used for validation. According to the receiver operating characteristic curves, our model shows a positive prediction rate and a true prediction rate of approximately 90% each, which is comparable to the best detection performance afforded by other algorithms using their optimized hyperparameters. The accurate and automatic ELM-burst detection methodology used in our model can be beneficial for determining plasma properties, such as the ELM frequency from big data measured in multiple experiments using machines from the KSTAR device and ITER. Additionally, it is applicable to feature detection in the time-series data of other engineering fields.

A Real-Time Surveillance System for Vaccine Cold Chain Based o n Internet of Things Technology

  • Shao-jun Jiang;Zhi-lai Zhang;Wen-yan Song
    • Journal of Information Processing Systems
    • /
    • v.19 no.3
    • /
    • pp.394-406
    • /
    • 2023
  • In this study, a real-time surveillance system using Internet of Things technology is proposed for vaccine cold chains. This system fully visualizes vaccine transport and storage. It comprises a 4G gateway module, lowpower and low-cost wireless temperature and humidity collection module (WTHCM), cloud service software platform, and phone app. The WTHCM is installed in freezers or truck-mounted cold chain cabinets to collect the temperature and humidity information of the vaccine storage environment. It then transmits the collected data to a gateway module in the radiofrequency_physical layer (RF_PHY). The RF_PHY is an interface for calling the bottom 2.4-GHz transceiver, which can realize a more flexible communication mode. The gateway module can simultaneously receive data from multiple acquisition terminals, process the received data depending on the protocol, and transmit the collated data to the cloud server platform via 4G or Wi-Fi. The cloud server platform primarily provides data storage, chart views, short-message warnings, and other functions. The phone app is designed to help users view and print temperature and humidity data concerning the transportation and storage of vaccines anytime and anywhere. Thus, this system provides a new vaccine management model for ensuring the safety and reliability of vaccines to a greater extent.

Thermal post-buckling analysis of graphene platelets reinforced metal foams beams with initial geometric imperfection

  • Gui-Lin She;Yin-Ping Li;Yujie He;Jin-Peng Song
    • Computers and Concrete
    • /
    • v.33 no.3
    • /
    • pp.241-250
    • /
    • 2024
  • This article investigates the thermal and post-buckling problems of graphene platelets reinforced metal foams (GPLRMF) beams with initial geometric imperfection. Three distribution forms of graphene platelet (GPLs) and foam are employed. This article utilizes the mixing law Halpin Tsai model to estimate the physical parameters of materials. Considering three different boundary conditions, we used the Euler beam theory to establish the governing equations. Afterwards, the Galerkin method is applied to discretize these equations. The correctness of this article is verified through data analysis and comparison with the existing articles. The influences of geometric imperfection, GPL distribution modes, boundary conditions, GPLs weight fraction, foam distribution pattern and foam coefficient on thermal post-buckling are analyzed. The results indicate that, perfect GPLRMF beams do not undergo bifurcation buckling before reaching a certain temperature, and the critical buckling temperature is the highest when both ends are fixed. At the same time, the structural stiffness of the beam under the GPL-A model is the highest, and the buckling response of the beam under the Foam-II mode is the lowest, and the presence of GPLs can effectively improve the buckling strength.

COVID-19 Therapeutics: An Update on Effective Treatments Against Infection With SARS-CoV-2 Variants

  • Bill Thaddeus Padasas;Erica Espano;Sang-Hyun Kim;Youngcheon Song;Chong-Kil Lee;Jeong-Ki Kim
    • IMMUNE NETWORK
    • /
    • v.23 no.2
    • /
    • pp.13.1-13.24
    • /
    • 2023
  • The coronavirus disease 2019 (COVID-19) pandemic is one of the most consequential global health crises in over a century. Since its discovery in 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to mutate into different variants and sublineages, rendering previously potent treatments and vaccines ineffective. With significant strides in clinical and pharmaceutical research, different therapeutic strategies continue to be developed. The currently available treatments can be broadly classified based on their potential targets and molecular mechanisms. Antiviral agents function by disrupting different stages of SARS-CoV-2 infection, while immune-based treatments mainly act on the human inflammatory response responsible for disease severity. In this review, we discuss some of the current treatments for COVID-19, their mode of actions, and their efficacy against variants of concern. This review highlights the need to constantly evaluate COVID-19 treatment strategies to protect high risk populations and fill in the gaps left by vaccination.