• Title/Summary/Keyword: Sonar target

Search Result 247, Processing Time 0.023 seconds

Synthesis and Classification of Active Sonar Target Signal Using Highlight Model (하이라이트 모델을 이용한 능동소나 표적신호의 합성 및 인식)

  • Kim, Tae-Hwan;Park, Jeong-Hyun;Nam, Jong-Geun;Lee, Su-Hyung;Bae, Keun-Sung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.135-140
    • /
    • 2009
  • In this paper, we synthesized active sonar target signals based on highlights model, and then carried out target classification using the synthesized signals. If the target aspect angle is changed, the different signals are synthesized. To know the result, two different experiments are done. First, The classification results with respect to each aspect angle are shown. Second, the results in two group in aspect angle are acquired. Time domain feature extraction is done using matched filter and envelope detection. It shows the pattern of each highlights. Artificial neural networks and multi-class SVM are used for classifying target signals.

The Effectiveness Analysis of Multistatic Sonar Network Via Detection Peformance (표적탐지성능을 이용한 다중상태 소나의 효과도 분석)

  • Jang, Jae-Hoon;Ku, Bon-Hwa;Hong, Woo-Young;Kim, In-Ik;Ko, Han-Seok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.1 s.24
    • /
    • pp.24-32
    • /
    • 2006
  • This paper is to analyze the effectiveness of multistatic sonar network based on detection performance. The multistatic sonar network is a distributed detection system that places a source and multi-receivers apart. So it needs a detection technique that relates to decision rule and optimization of sonar system to improve the detection performance. For this we propose a data fusion procedure using Bayesian decision and optimal sensor arrangement by optimizing a bistatic sonar. Also, to analyze the detection performance effectively, we propose the environmental model that simulates a propagation loss and target strength suitable for multistatic sonar networks in real surroundings. The effectiveness analysis on the multistatic sonar network confirms itself as a promising tool for effective allocation of detection resources in multistatic sonar system.

Measure of Effectiveness Analysis for Tracking in SONAR System (소나시스템에서의 추적효과도 분석)

  • Cho, Jung-Hong;Kim, Hyoung Rok;Kim, Seongil;Kim, Jea Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.5-26
    • /
    • 2013
  • Since the optimized use of sonar systems for target tracking is a practical problem for naval operations, the measure of mission achievability is needed for preparing efficient sonar-maneuver tactic. In order to quantify the mission achievability or Measure Of Effectiveness(MOE) for given sonar-maneuver tactics, we developed and tested a simulation algorithm. The proposed algorithm for tracking is based on Measure Of Performance(MOP) for localization and tracking system of sonar against target. Probability of Detection(PD) using steering beam patterns referenced to the aspect angle of sonar is presented to consider the tracking-performance of sonar. Also, the integrated software package, named as Optimal Acoustic Search Path Planning(OASPP) is used for generating sonar-maneuver patterns and vulnerability analysis for a given scenario. Through simulation of a simple case for which the intuitive solution is known, the proposed algorithm is verified.

Single Ping Clutter Reduction Algorithm Using Statistical Features of Peak Signal to Improve Detection in Active Sonar System (능동소나 탐지 성능 향상을 위한 피크 신호의 통계적 특징 기반 단일 핑 클러터 제거 기법)

  • Seo, Iksu;Kim, Seongweon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.1
    • /
    • pp.75-81
    • /
    • 2015
  • In active sonar system, clutters degrade performance of target detection/tracking and overwhelm sonar operators in ASW (Antisubmarine Warfare). Conventional clutter reduction algorithms using consistency of local peaks are studied in multi-ping data and tracking filter research for active sonar was conducted. However these algorithms cannot classify target and clutters in single ping data. This paper suggests a single ping clutter reduction approach to reduce clutters in mid-frequency active sonar system using echo shape features. The algorithm performance test is conducted using real sea-trial data in heavy clutter density environment. It is confirmed that the number of clutters was reduced by about 80 % over the conventional algorithm while retaining the detection of target.

Comparison of Active Sonar Target Positioning Performance and Optimal Sensor Arrangement (능동 소나 위치 추정 성능 비교 및 최적 수신망 배치)

  • 박치현;홍우영;고한석;김인익
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.224-232
    • /
    • 2003
  • In this paper, efficient deployment method of sensors and target positioning performance with respect to measurement error are dealt with. Active sonar can be categorized into Monostatic, Bistatic, Multistatic sonar, and characteristics of respective sonar are different. Assuming that each sensor can receive range and angular information, we compare the performance of Monostatic, Bistatic, and Multistatic systems. And we suggest Weighted least square (WLS) which gives the weight to former case, LS. In particular. adopting suggested method we investigate the target positioning performance according to number of sensor, distance from transmitter to receiver, and propose efficient arrangement rule for Multistatic sonar configurations. According to the experimental results, RMSE of Multistatic sonar is found to be superior to Monostatic and Bistatic by 35.98%. 37.45% respectively, and WLS is superior to LS approximately by 7.4% in average. Furthermore, as the difference of respective sensor's variance is large, it is observed that the improvement ratio of target positioning performance is increased.

Underwater Acoustic Research Trends with Machine Learning: Passive SONAR Applications

  • Yang, Haesang;Lee, Keunhwa;Choo, Youngmin;Kim, Kookhyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.3
    • /
    • pp.227-236
    • /
    • 2020
  • Underwater acoustics, which is the domain that addresses phenomena related to the generation, propagation, and reception of sound waves in water, has been applied mainly in the research on the use of sound navigation and ranging (SONAR) systems for underwater communication, target detection, investigation of marine resources and environment mapping, and measurement and analysis of sound sources in water. The main objective of remote sensing based on underwater acoustics is to indirectly acquire information on underwater targets of interest using acoustic data. Meanwhile, highly advanced data-driven machine-learning techniques are being used in various ways in the processes of acquiring information from acoustic data. The related theoretical background is introduced in the first part of this paper (Yang et al., 2020). This paper reviews machine-learning applications in passive SONAR signal-processing tasks including target detection/identification and localization.

Performance Analysis of Omni-Directional Automatic Target Detection and Tracking for a Towed Array Passive Sonar System (예인형 수동소나에 적합한 전방위 표적 자동탐지 및 추적기법 성능 분석)

  • Seo, Ik-Su
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.33-40
    • /
    • 2006
  • In towed array passive sonar system, sonar operators cannot detect and track the all targets simultaneously in the omni-directional area by just Operator Initiated Tracking(OIT). In this paper, omni-directional automatic target detection and tracking algorithm is described and optimize the parameters through ocean data to overcome the drawbacks of OITs. The algorithm is verified through sea trials with submarines.

Analysis of the range estimation error of a target in the asynchronous bistatic sonar (비동기 양상태 소나의 표적 거리 추정 오차 분석)

  • Jeong, Euicheol;Kim, Tae-Hwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.3
    • /
    • pp.163-169
    • /
    • 2020
  • The asynchronous bistatic sonar needs to estimate direct blast arrival time at a receiver to localize targets, and therefore the direct blast arrival time estimation error could be added to target localization error in comparison with synchronous system. Direct blast especially appears as several peaks at the matched filter output by multipath, thus we compared the first peak detection technique and the maximum peak detection technique of those peaks for direct blast arrival time estimation through sea trial data. The test was performed in a shallow sea with bistatic sonar made up of spatially separated source and line array sensors. Line array sensors obtained the target signal which is generated from the echo repeater. As a result, the first peak detection technique is superior to maximum peak detection technique in direct blast arrival time estimation error. The result of this analysis will be used for further research of target tracking in the asynchronous bistatic sonar.

A Study on the Algorithm for Underwater Target Automatic Classification using the Passive Sonar (수동소나를 이용한 수중물체 자동판별기법 연구)

  • 이성은;최수복;노도영
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.76-84
    • /
    • 2000
  • As first step of any acoustic defence system, a attacking target warning system needs to be extremely reliable. This means the system must ensure a high probability of target classification together with a very low false alarm rate. In this paper, a algorithms for underwater target automatic classification is available for use in the passive sonar will be presented. In first, we will describe the precise automatic extraction of frequency lines for the detection of acoustic signatures. Also, a neural network and fuzzy based algorithms for target classification will be described. Thus the performances of these algorithms are very good with a high probability of classification.

  • PDF

An Enhanced Target State Estimation using Covariance Analysis Techniques for a Monopulse Sonar System (공분산 행렬 해석기법을 이용한 모노펄스 소나 표적상태 추정 성능 향상 기법)

  • Lee, Chang-Ho;Kim, Jea-Soo;Lee, Sang-Young;Kim, Kang;Oh, Woun-Chun;Cho, Woon-Hyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.34-39
    • /
    • 1996
  • Target state estimation is a fundamental problem of the sonar signal processing. In this paper, the covariance analysis techniques are applied to enhance the performance of the target state estimation of a monopulse sonar system. MOST, the artificial target signal generator based on the highlight model is used to generate signals in various target states. The performance of the developed method has been evaluated by applying it to the various S/N. The enhanced performance of the covariance analysis method presented in this paper is discussed.

  • PDF