• Title/Summary/Keyword: Sonar Target

Search Result 249, Processing Time 0.021 seconds

Modeling and Target Classification Using Multiple Reflections of Sonar

  • Lee, Wang-Heon;Yoon, Kuk-Jin;Kweon, In-So
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.830-835
    • /
    • 2003
  • This paper describes a sonic polygonal multiple reflection range sensor (SPMRS), which uses multiple reflection properties usually ignored in ultrasonic sensors as disturbances or noises. Targets such as a plane, corner, edge, or cylinder in indoor environments can easily be detected by the multiple reflection patterns obtained with a SPMRS system. Target classification and feature data extraction, such as distance and azimuth to the target, are computed simultaneously by considering the geometrical relationships between the detected targets, and finally the environment model is generated by refining the detected targets. In addition, the narrow field of view of a sonar range sensor is increased and the scanning time is reduced by active motion of the SPMRS stepping servomechanism.

  • PDF

A Study on the Torpedo Sonar Simulation for Combat System by Modeling Target and Noise (전투체계를 위한 표적 및 주변소음 모델링을 통한 어뢰소나 표적탐지 시뮬레이션 연구)

  • Kim, Yong;You, Hyun Seung;Kim, Seung Hwan;Ji, Jae Kyung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.554-564
    • /
    • 2020
  • In environment of torpedo firing, underwater acoustic signal is generated by target and noise. Sound wave which is generated from acoustic signal is propagated by seawater and it is received through the sonar(sound navigation and ranging) system mounted on torpedo. In the ocean, acoustic signal or sound wave from target that is generated by the spread of broadband can be attenuated by ambient noise and can be lost by medium and environment. This research is designed to support teamwork training in Naval operations by constructing a simulation system that is more similar to the real-world conditions. This paper attempts to research the modeling of target detection and to develop the simulation of torpedo sonar(TOSO). In order to develop the realistic simulation, we researched the broadband sound modeling of target and noise source, the modeling of acoustic transmission loss by chemical component of seawater, and the modeling of signal attenuation by ambient noise environment which is approximated by experimental measurements in seawater surrounding the Korea Peninsular and by experience of Navy's actual torpedo firing. This research contributed to constructing more practical simulation of torpedo firing in real time and the results of this research were used to develop a teamwork training system for the Navy and their education.

Possibility of False Target Signals Induced by Reverberation Due to Internal Waves in Shallow Water (천해에서 내부파로 인해 생성되는 잔향음에 의한 허위표적 신호 발생 가능성)

  • Lee, Sung Chun;Kim, Sunhyo;Choi, Jee Woong;Kang, Donhyug;Park, Joung Soo;Park, Kyeongju
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.2
    • /
    • pp.98-107
    • /
    • 2015
  • It is investigated that there exists the possibility of the false target signals induced by reverberation in an active sonar system due to the internal waves in shallow water. The rays down-refracted from the internal waves may generate strong bottom-reverberation signals, which can result in false target signals. Sound waves emitted from a source propagate 3-dimensionally. Therefore, the study of internal waves on the reverberation should be studied for azimuthal direction as well as 2-dimensional (r-z) plane. Internal-wave modelling was conducted, based on solitons which were predicted with the various conditions such as, the range of source-soliton, horizontal widths of soliton. Variable depth sonar (VDS) was assumed as a source, of which the depth was located in the minimum sound speed layer in a simulation environment. Finally, the simulation on the reverberation level with time was made based on ray-based reverberation model, and the results implied that several false-target signals could be displayed on the PPI(Plan Position Indicator) scope simultaneously with range from source to soliton, and the horizontal width of soliton.

Optimal depth for dipping sonar system using optimization algorithm (최적화 알고리즘을 적용한 디핑소나 최적심도 산출)

  • An, Sangkyum
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.6
    • /
    • pp.541-548
    • /
    • 2020
  • To overcome the disadvantage of hull mounted sonar, many countries operate dipping sonar system for helicopter. Although limited in performance, this system has the advantage of ensuring the survivability of the surface ship and improving the detection performance by adjusting the depth according to the ocean environment. In this paper, a method to calculate the optimal depth of the dipping sonar for helicopters is proposed by applying an optimization algorithm. In addition, in order to evaluate the performance of the sonar, the Sonar Performance Function (SPF) is defined to consider the ocean environment, the depth of the target and the depth of the dipping sonar. In order to reduce the calculation time, the optimal depth is calculated by applying Simulated Annealing (SA), one of the optimization algorithms. For the verification of accuracy, the optimal depth calculated by applying the optimization technique is compared with the calculation of the SPF. This paper also provides the results of calculation of optimal depth for ocean environment in the East sea.

A robust detection algorithm against clutters in active sonar in shallow coastal environment (연안 환경에서 클러터에 강인한 능동소나 탐지 알고리듬)

  • Jang, Eun Jeong;Kwon, Sungchur;Oh, Won Tcheon;Lee, Jung Woo;Shin, Keecheol;Kim, Juho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.6
    • /
    • pp.661-669
    • /
    • 2019
  • High frequency active sonar is appropriate for detecting small targets such as a diver in coast environment. In case of using high frequency active sonar in shallow coastal environment, a false alarm rate is high due to clutters caused by marine biological noise, ship noise, wake, etc. In this paper, we propose an algorithm for target detection which is robust against clutter in active sonar system in shallow coastal environment. The proposed algorithm increases the rate of reduction clutter using calculation of statistical characteristics of signal and a clustering method. The algorithm is evaluated and analysed with sea trial data, as a result, that shows the rate of reducing rate of clutter of 96 % and over.

Pre-processing Faded Measurements for Bearing-and-Frequency Target Motion Analysis

  • Lee, Man-Hyung;Moon, Jeong-Hyun;Kim, In-Soo;Kim, Chang-Sup;Choi, Jae-Weon
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.3
    • /
    • pp.424-433
    • /
    • 2008
  • An ownship with towed array sonar (TAS) has limited maneuvers due to its dynamic feature, bearing and frequency measurements of a target which are not detected continuously but are often lost in ocean environment. We propose a pre-processing algorithm for the faded bearing and frequency measurements to solve the BFTMA problem of TAS under limited detection conditions. The proposed pre-processing algorithm to restore the faded bearing and frequency measurements is implemented to perform a BFTMA filter even if the measurements of a target are not continuously detected. The Modified Gain Extended Kalman Filter (MGEKF) method based on the Interacting Multiple Model (IMM) structure is applied for a BFTMA filter algorithm to estimate the target. Simulations for the various conditions were carried out to verify the applicability of the proposed algorithms, and confirmed superior estimation performance compared with the existing Bearings-Only TMA (BOTMA).

Target Motion Analysis for a Passive Sonar System with Observability Enhancing (가관측성 향상을 통한 수동소나체계의 표적기동 분석)

  • 한태곤;송택렬
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.9-16
    • /
    • 1999
  • As a part of target motion analysis(TMA) with highly noisy bearings-only measurements from a passive sonar system, a nonlinear batch estimator is proposed to provide the initial estimates to a sequential estimator called the modified gain extended Kalman filter(MGEKF). Based on the system observability analysis of passive target tracking, a practical and effective method is suggested to determine the observer maneuvers for improved TMA performance through system observability enhancing. Also suggested is a method to determine observer location for enhanced system observability at the initial phase of TMA from various engagement boundaries which represent the relationship between observer-target relative geometrical data and system observability. The proposed TMA methods are tested by a series of computer simulation runs.

  • PDF

Application of Approximate FFT Method for Target Detection in Distributed Sensor Network (분산센서망 수중표적 탐지를 위한 근사 FFT 기법의 적용 연구)

  • Choi, Byung-Woong;Ryu, Chang-Soo;Kwon, Bum-Soo;Hong, Sun-Mog;Lee, Kyun-Kyung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.149-153
    • /
    • 2008
  • General underwater target detection methods adopt short-time FFT for estimate target doppler. This paper proposes the efficient target detection method, instead of conventional FFT, using approximate FFT for distributed sensor network target detection, which requires lighter computations. In the proposed method, we decrease computational rate of FFT by the quantization of received signal. For validation of the proposed method, experiment result which is applied to FFT based active sonar detector and real oceanic data is presented.

Implementation of Sonar Bearing Accuracy Measurement Equipment with Parallax Error and Time Delay Error Correction (관측위치오차와 시간지연오차를 보정하는 소나방위정확도 측정 장비 구현)

  • Kim, Sung-Duk;Kim, Do-Young;Park, Gyu-Tae;Shin, Kee-Cheol
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.20 no.4
    • /
    • pp.245-251
    • /
    • 2019
  • Sonar bearing accuracy is the correspondence between the target orientation predicted by sonar and actual target orientation, and is obtained from measurements. However, when measuring sonar bearing accuracy, many errors are included in the results because they are made at sea, where complex and diverse environmental factors are applied. In particular, parallax error caused by the difference between the position of the GPS receiver and the sonar sensor, and the time delay error generated between the speed of underwater sound waves and the speed of electromagnetic waves in the air have a great influence on the accuracy. Correcting these parallax errors and time delay errors without an automated tool is a laborious task. Therefore, in this study, we propose a sonar bearing accuracy measurement equipment with parallax error and time delay error correction. The tests were carried out through simulation data and real data. As a result of the test it was confirmed that the parallax error and time delay error were systematically corrected so that 51.7% for simulation data and more than 18.5% for real data. The proposed method is expected to improve the efficiency and accuracy of sonar system detection performance verification in the future.

Semiautomated Analysis of Data from an Imaging Sonar for Fish Counting, Sizing, and Tracking in a Post-Processing Application

  • Kang, Myoung-Hee
    • Fisheries and Aquatic Sciences
    • /
    • v.14 no.3
    • /
    • pp.218-225
    • /
    • 2011
  • Dual frequency identification sonar (DIDSON) is an imaging sonar that has been used for numerous fisheries investigations in a diverse range of freshwater and marine environments. The main purpose of DIDSON is fish counting, fish sizing, and fish behavioral studies. DIDSON records video-quality data, so processing power for handling the vast amount of data with high speed is a priority. Therefore, a semiautomated analysis of DIDSON data for fish counting, sizing, and fish behavior in Echoview (fisheries acoustic data analysis software) was accomplished using testing data collected on the Rakaia River, New Zealand. Using this data, the methods and algorithms for background noise subtraction, image smoothing, target (fish) detection, and conversion to single targets were precisely illustrated. Verification by visualization identified the resulting targets. As a result, not only fish counts but also fish sizing information such as length, thickness, perimeter, compactness, and orientation were obtained. The alpha-beta fish tracking algorithm was employed to extract the speed, change in depth, and the distributed depth relating to fish behavior. Tail-beat pattern was depicted using the maximum intensity of all beams. This methodology can be used as a template and applied to data from BlueView two-dimensional imaging sonar.