• Title/Summary/Keyword: Sonar Sensors

Search Result 137, Processing Time 0.022 seconds

Enhancement of Source Localization Performance using Clustering Ranging Method (클러스터링 기법을 이용한 음원의 위치추정 성능향상)

  • Lee, Ho Jin;Yoon, Kyung Sik;Lee, Kyun Kyung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.9-15
    • /
    • 2016
  • Source localization has developed in various fields of signal processing including radar, sonar, and wireless communication, etc. Source localization can be found by estimating the time difference of arrival between the each of sensors. Several methods like the NLS(Nonlinear Least Square) cost function have been proposed in order to improve the performance of time delay estimation. In this paper, we propose a clustering method using the four sensors with the same aperture as previous methods of using the three sensors. Clustering method can be improved the source localization performance by grouping similar estimated values. The performance of source localization using clustering method is evaluated by Monte Carlo simulation.

Two Feature Points Based Laser Scanner for Mobile Robot Navigation (레이저 센서에서 두 개의 특징점을 이용한 이동로봇의 항법)

  • Kim, Joo-Wan;Shim, Duk-Sun
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.2
    • /
    • pp.134-141
    • /
    • 2014
  • Mobile robots use various sensors for navigation such as wheel encoder, vision sensor, sonar, and laser sensors. Dead reckoning is used with wheel encoder, resulting in the accumulation of positioning errors. For that reason wheel encoder can not be used alone. Too much information of vision sensors leads to an increase in the number of features and complexity of perception scheme. Also Sonar sensor is not suitable for positioning because of its poor accuracy. On the other hand, laser sensor provides accurate distance information relatively. In this paper we propose to extract the angular information from the distance information of laser range finder and use the Kalman filter that match the heading and distance of the laser range finder and those of wheel encoder. For laser scanner with one feature point error may increase much when the feature point is variant or jumping to a new feature point. To solve the problem, we propose to use two feature points and show that the positioning error can be reduced much.

A method of determining pulse start points for reduction in computational amount of intercept array sonar (방수배열소나의 연산량 감소를 위한 펄스 시작점 산출 방법)

  • Do-Young Kim;Kee-Cheol Shin;Tae-Jin Jung;Min-Jeong Eom
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.25 no.1
    • /
    • pp.1-6
    • /
    • 2024
  • The main function of intercept array sonar is to detect pulses radiated from enemy surface ships, submarines, and torpedoes. When a pulse is detected, it is a high risk situation for the own ship, so it is very important to find the target's location for the ship's maneuverability and survival. The target's location is calculated by finding the starting point of the pulse received form each sensor and calculating the time delay between sensors. In order to find starting point, the envelope of the signal is calculated and differential filtering is performed. However, since intercept array sonar has a high sampling frequency of the signal, the number of samples to be processed is large, so this process has a problem with a large computational amount. In this paper, we propose a pulse starting point calculation method using decimation for reducing computational amount. Simulations were performed while changing the decimation factor, and it was confirmed that computational amount was reduced. The proposed method is expected to be effective in real-time processing system and have advantages in resource utilization.

A BIM and UWB integrated Mobile Robot Navigation System for Indoor Position Tracking Applications

  • Park, JeeWoong;Cho, Yong K.;Martinez, Diego
    • Journal of Construction Engineering and Project Management
    • /
    • v.6 no.2
    • /
    • pp.30-39
    • /
    • 2016
  • This research presents the development of a self-governing mobile robot navigation system for indoor construction applications. This self-governing robot navigation system integrated robot control units, various positioning techniques including a dead-reckoning system, a UWB platform and motion sensors, with a BIM path planner solution. Various algorithms and error correction methods have been tested for all the employed sensors and other components to improve the positioning and navigation capability of the system. The research demonstrated that the path planner utilizing a BIM model as a navigation site map could effectively extract an efficient path for the robot, and could be executed in a real-time application for construction environments. Several navigation strategies with a mobile robot were tested with various combinations of localization sensors including wheel encoders, sonar/infrared/thermal proximity sensors, motion sensors, a digital compass, and UWB. The system successfully demonstrated the ability to plan an efficient path for robot's movement and properly navigate through the planned path to reach the specified destination in a complex indoor construction site. The findings can be adopted to several potential construction or manufacturing applications such as robotic material delivery, inspection, and onsite security.

A Study on Real-Time Autonomous Travelling Control of Two-wheel Driving Robot Based Ultrasonic Sensors (초음파센서기반 2휠구동로봇의 실시간 자율주행제어에 관한연구)

  • hwang, Won-Jun;Park, In-Man;Kang, Un-Wook;Han, Sung-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.17 no.3
    • /
    • pp.151-169
    • /
    • 2014
  • We propose a new technique for autonomous navigation and travelling of mobile robot based on ultrasonic sensors through the narrow labyrinth that leave only distance of a few centimeters on each side between the guides and the robot. In our current implementation the ultrasonic sensor system fires at a rate of 100 ms, that is, each of the 8 sensors fires once during each 100 ms interval. This is a very good firing rate, implemented here for optimal performance. This paper presents an extensively tested and verified solution to the problem of obstacle avoidance. Our solution is based on the optimal placement of ultrasonic sensors at strategic locations around the robot. Both the sensor location and the associated navigation algorithm are defined in such a way that only the accurate radial sonar data is used for accurate travelling.

Performance Analysis and Improvement of Array Shape Estimation for SONAR Systems (소나 시스템을 위한 어레이 형상 추정 기법의 성능 비교 및 개선)

  • 박희영;김인익;오원천;윤대희;이충용
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.12-16
    • /
    • 2001
  • To analyze the performance of array shape estimation techniques using auxiliary sensors, the appropriate number and the positions of auxiliary sensors are investigated. Also, a post-processing technique based on spline interpolation is proposed to improve the performance of array shape estimation. The simulation results showed that when auxiliary sensors are arranged uniformly, the performance of shape estimation is better than other arrangements of auxiliary sensors. Also, the proposed post-processing technique improved the performance of the existing shape estimation method, such as Kalman filter method.

  • PDF

A Study on the Object Angle Inference in a Sonar Sensor Array System (초음파센서 배열 시스템에서 물체의 각도 추론에 관한 연구)

  • 나승유;박민상
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.271-274
    • /
    • 1998
  • Ultrasonic sensors are becoming indispensable components in every sector of automation equipments due to many advantages. But the main purposes of the noncontact sensing device are rather narrowly confined within object detection and distance measurement. To widen the realm of the applications to object recognition, ultrasonic sensors need to improve the recognition resolution to a certain amount. To resolve the problem of spatial resolution restriction, an increased number of the sensors in the forms of a linear array or 2-dimensional array of the sensor has been used. Also better resolution has been obtained by shifting the array in several steps using mechanical actuators. For an object recognition using ultrasonic sensors, measurements of distance, shift, oblique angle in certain ranges should be obtained. But a little attention has been paid to the measurement of angles. In this paper we propose a practical method for an object angular value detection in addition to distance measurement in ultrasonic sensor array system with little additional hardware burden. Using the established measurement look-up table for the variations of distance, shift, angle and transmitter voltages for each sensor characteristics, a set of different return echo signals for adjacent receivers are processed to provide enhanced angular value reading for an object.

  • PDF

Improved time delay estimation by adaptive eigenvector decomposition for two noisy acoustic sensors (잡음이 있는 두 음향 센서를 이용한 시간 지연 추정을 위한 향상된 적응 고유벡터 추정 기반 알고리즘)

  • Lim, Jun-Seok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.6
    • /
    • pp.499-505
    • /
    • 2018
  • Time delay estimation between two acoustic sensors is widely used in room acoustics and sonar for target position estimation, tracking and synchronization. A cross-correlation based method is representative for the time delay estimation. However, this method does not have enough consideration for the noise added to the receiving acoustic sensors. This paper proposes a new time delay estimation method considering the added noise on the receiver acoustic sensors. From comparing with the existing GCC (Generalized Cross Correlation) method, and adaptive eigen decomposition method, we show that the proposed method outperforms other methods for a colored signal source in the white Gaussian noise condition.

Mobile robot map making using ultrasonic sensor array (초음파센서 배열을 이용한 이동로봇의 지도작성)

  • 범희락;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.119-124
    • /
    • 1993
  • This paper describes a method of producing maps of an indoor environment with an autonomous mobile robot equipped with sonar array. This method uses the certainty grid suitable for accommodation of inaccurate sensor data and real-time navigation. Each grid contains a certainty vale that indicates the measure of confidence that an obstacle exists within th grid area. The scheduled firing method is used to eliminate the crosstalk between ultrasonic sensors. The effectiveness of the method is verified by a series of experiments.

  • PDF

A Study on Fuzzy Controller for Autonomous Mobile Robot (자율 이동 로보트의 퍼지 제어기에 관한 연구)

  • 주영훈;황희수;고재원;김성권;황금찬;우광방
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.9
    • /
    • pp.1071-1084
    • /
    • 1992
  • In this paper, the method for navigation and obstacle avoidance of the autonomous mobile robot is proposed. The proposed algorithms are based on the fuzzy inference system which is able to deal with imprecise and uncertain information. The self-tuning algorithm, which adopts the simplex method, modifies the parameters of membership functions of the input-output linguistic variables by changing the support of these fuzzy sets according to the integral of absolute error(IAE) of the system response. The wall-follwing navigation and obstacle avoidance of the mobile robot are based on range data measured from the internal sensors(encoder) and the outer sensors(sonar sensor). In addition, the algorithm for the obstacle detection proposed in this paper is based on the expert's experience. Finally, the effectiveness of navigation and obstacle avoidance algorithm is demonstrated through simulation and experiment.

  • PDF