DOI QR코드

DOI QR Code

A method of determining pulse start points for reduction in computational amount of intercept array sonar

방수배열소나의 연산량 감소를 위한 펄스 시작점 산출 방법

  • Received : 2023.10.23
  • Accepted : 2024.03.27
  • Published : 2024.03.31

Abstract

The main function of intercept array sonar is to detect pulses radiated from enemy surface ships, submarines, and torpedoes. When a pulse is detected, it is a high risk situation for the own ship, so it is very important to find the target's location for the ship's maneuverability and survival. The target's location is calculated by finding the starting point of the pulse received form each sensor and calculating the time delay between sensors. In order to find starting point, the envelope of the signal is calculated and differential filtering is performed. However, since intercept array sonar has a high sampling frequency of the signal, the number of samples to be processed is large, so this process has a problem with a large computational amount. In this paper, we propose a pulse starting point calculation method using decimation for reducing computational amount. Simulations were performed while changing the decimation factor, and it was confirmed that computational amount was reduced. The proposed method is expected to be effective in real-time processing system and have advantages in resource utilization.

방수배열소나의 주 기능은 적 수상함 및 잠수함, 어뢰 등에서 방사하는 펄스를 탐지하는 것이다. 펄스를 탐지한 경우에는 자함 입장에서 위험도가 높은 상황이므로 자함의 기동 및 생존을 위해 표적의 위치를 찾는 건 매우 중요하다. 표적의 위치는 각 센서에서 수신된 펄스의 시작점을 찾고 센서 간 시간지연 값을 계산하여 산출하게 된다. 펄스 시작점을 구하기 위해서는 신호의 포락선을 산출하고 미분 필터링 과정을 거치게 되는데 방수배열소나는 신호의 샘플링 주파수가 높아 처리하는 샘플 개수가 많으므로 이 과정은 연산량이 큰 문제가 있다. 이에 본 논문은 연산량을 줄일 수 있는 간축 적용 펄스 시작점 산출 방법을 제안하였다. 간축 계수를 변경하면서 시뮬레이션을 수행하였고 연산량이 감소함을 확인하였다. 제안한 방법은 실시간 처리 시스템에 효과적이며 자원 활용도에 장점을 가질 것으로 기대한다.

Keywords

References

  1. D. Y. Kim, K. C. Shin, M. J. Eom, S. C. Kwon, "A method for automatically adjusting threshold to improve the intercept pulse detection performance of submarine,"Journal of the Korea Institute of Convergence Signal Processing, 22(4), pp. 213-219, 2021.
  2. J. N. Sreedavy, R. Pradeepa, V. P. Felix, "A novel algorithm for intercept sonar signal detector," International Symposium on Ocean Electronics, Cochin, India, pp. 3-8, 2009
  3. G. C. Carter, "Time Delay Estimation for Passive Sonar Signal Processing,"IEEE Trans. Acoustics, Speech, And Signal Processing, vol. ASSP-29, no. 3, pp. 463-470, 1981.
  4. A. D. Waite, SONAR for practising Engineers Third Edition, JOHN WILEY & SONS Ltd, pp. 249-260, 2002.
  5. C. H. Knapp, G. C. Carter, "The generalized correlation method for estimation of time delay,"IEEE Trans. Acoustics, Speech, And Signal Processing, vol. ASSP-24, no. 4, pp. 320-327, 1976.
  6. J. Canny,"A Computational Approach to Edge Detection,"IEEE Trans. Pattern Analysis and Machine Inteligence, vol. 8, pp. 679-698, 1986.
  7. H. Jeong, C. I. Kim,"Adaptive Determination of Filter Scales for Edge Detection,"IEEE Trans. Pattern Analysis and Machine Inteligence, vol. 14, no. 5, pp. 579-585, 1992.