• 제목/요약/키워드: Solutions of a partial differential equation

검색결과 74건 처리시간 0.025초

A Validation Method for Solution of Nonlinear Differential Equations: Construction of Exact Solutions Neighboring Approximate Solutions

  • Lee, Sang-Chul
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제3권2호
    • /
    • pp.46-58
    • /
    • 2002
  • An inverse method is introduced to construct benchmark problems for the numerical solution of initial value problems. Benchmark problems constructed through this method have a known exact solution, even though analytical solutions are generally not obtainable. The solution is constructed such that it lies near a given approximate numerical solution, and therefore the special case solution can be generated in a versatile and physically meaningful fashion and can serve as a benchmark problem to validate approximate solution methods. A smooth interpolation of the approximate solution is forced to exactly satisfy the differential equation by analytically deriving a small forcing function to absorb all of the errors in the interpolated approximate solution. A multi-variable orthogonal function expansion method and computer symbol manipulation are successfully used for this process. Using this special case exact solution, it is possible to directly investigate the relationship between global errors of a candidate numerical solution process and the associated tuning parameters for a given code and a given problem. Under the assumption that the original differential equation is well-posed with respect to the small perturbations, we thereby obtain valuable information about the optimal choice of the tuning parameters and the achievable accuracy of the numerical solution. Illustrative examples show the utility of this method not only for the ordinary differential equations (ODEs) but for the partial differential equations (PDEs).

ALMOST PERIODIC SOLUTIONS OF PERIODIC SECOND ORDER LINEAR EVOLUTION EQUATIONS

  • Nguyen, Huu Tri;Bui, Xuan Dieu;Vu, Trong Luong;Nguyen, Van Minh
    • Korean Journal of Mathematics
    • /
    • 제28권2호
    • /
    • pp.223-240
    • /
    • 2020
  • The paper is concerned with periodic linear evolution equations of the form x"(t) = A(t)x(t)+f(t), where A(t) is a family of (unbounded) linear operators in a Banach space X, strongly and periodically depending on t, f is an almost (or asymptotic) almost periodic function. We study conditions for this equation to have almost periodic solutions on ℝ as well as to have asymptotic almost periodic solutions on ℝ+. We convert the second order equation under consideration into a first order equation to use the spectral theory of functions as well as recent methods of study. We obtain new conditions that are stated in terms of the spectrum of the monodromy operator associated with the first order equation and the frequencies of the forcing term f.

EXISTENCE OF SOLUTIONS FOR P-LAPLACIAN TYPE EQUATIONS

  • Kim, Jong-Sik;Ku, Hye-Jin
    • 대한수학회지
    • /
    • 제33권2호
    • /
    • pp.291-307
    • /
    • 1996
  • In this paper, we shall show the existence of solutions of the following nonlinear partial differential equation $$ {^{divA(-\Delta u) = f(x, u, \Delta u) in \Omega}^{u = 0 on \partial\Omega} $$ where $f(x, u, \Delta u) = -u$\mid$\Delta u$\mid$^{p-2} + h, p \geq 2, h \in L^\infty$.

  • PDF

GENERATION OF SIMPLEX POLYNOMIALS

  • LEE JEONG KEUN
    • Journal of applied mathematics & informatics
    • /
    • 제17권1_2_3호
    • /
    • pp.797-802
    • /
    • 2005
  • We generate simplex polynomials by using a method, which produces an OPS in (d + 1) variables from an OPS in d variables and the Jacobi polynomials. Also we obtain a partial differential equation of the form $${\Sigma}_{i,j=1}^{d+1}\;A_ij{\frac{{\partial}^2u}{{\partial}x_i{\partial}x_j}}+{\Sigma}_{i=1}^{d+1}\;B_iu\;=\;{\lambda}u$$, which has simplex polynomials as solutions, where ${\lambda}$ is the eigenvalue parameter.

A REGULARITY THEOREM FOR THE INITIAL TRACES OF THE SOLUTIONS OF THE HEAT EQUATION

  • Chung, Soon-Yeong
    • 대한수학회지
    • /
    • 제33권4호
    • /
    • pp.1039-1046
    • /
    • 1996
  • In the theory of partial differential equations with given initial values and boundary values one usually investigates to examine the well-posedness, that is, the unique existence of the solution as well as its continuous dependence on the data. This theory is strong enough for us to determine the situation anywhere and anytime provided that the initial data are actually given. However, in many cases the data are not completely known for us. Then in those situations arise the new problem to determine the unknown initial data by taking other conditions for the solutions.

  • PDF

Harmonic differential quadrature (HDQ) for axisymmetric bending analysis of thin isotropic circular plates

  • Civalek, Omer;Ulker, Mehmet
    • Structural Engineering and Mechanics
    • /
    • 제17권1호
    • /
    • pp.1-14
    • /
    • 2004
  • Numerical solution to linear bending analysis of circular plates is obtained by the method of harmonic differential quadrature (HDQ). In the method of differential quadrature (DQ), partial space derivatives of a function appearing in a differential equation are approximated by means of a polynomial expressed as the weighted linear sum of the function values at a preselected grid of discrete points. The method of HDQ that was used in the paper proposes a very simple algebraic formula to determine the weighting coefficients required by differential quadrature approximation without restricting the choice of mesh grids. Applying this concept to the governing differential equation of circular plate gives a set of linear simultaneous equations. Bending moments, stresses values in radial and tangential directions and vertical deflections are found for two different types of load. In the present study, the axisymmetric bending behavior is considered. Both the clamped and the simply supported edges are considered as boundary conditions. The obtained results are compared with existing solutions available from analytical and other numerical results such as finite elements and finite differences methods. A comparison between the HDQ results and the finite difference solutions for one example plate problem is also made. The method presented gives accurate results and is computationally efficient.

현수교 다리에서의 초기치 문제에 대한 역학적 운동 (Dynamics Oscillations in Suspension Bridges to Initial Conditions)

  • Hye-Young Oh
    • 한국컴퓨터산업학회논문지
    • /
    • 제3권5호
    • /
    • pp.569-574
    • /
    • 2002
  • 유계된 정의역에서 sine-Gordon 방정식인 현수교의 과격한 운동의 모델을 만든다. 유한 차분법을 이용하여 비선형 미분방정식을 수치 해석학적으로 풀다. 이 미분방정식은 다중 주기근을 가지고 있다. 다리가 큰 진폭이나 작은 진폭으로 진동하는 것은 초기의 변위와 속도에만 달려있다. 게다가, 많은 현상들이 Tacoma Narrows가 붕괴된 날에 관찰되는 것과 일치하고 있다.

  • PDF

EXISTENCE OF FUNCTIONAL DIFFERENTIAL EQUATIONS WITH STEPANOV FORCING TERMS.

  • Lee, Hyun Mork
    • 충청수학회지
    • /
    • 제33권3호
    • /
    • pp.351-363
    • /
    • 2020
  • We introduce a new concept of Stepanov weighted pseudo almost periodic functions of class r which have been established by recently in [20]. Furthermore, we study the uniqueness and existence of Stepanov weighted pseudo almost periodic mild solutions of partial neutral functional differential equations having the Stepanov pseudo almost periodic forcing terms on finite delay.

ZERO SCALAR CURVATURE ON OPEN MANIFOLDS

  • Kim, Seong-Tag
    • 대한수학회논문집
    • /
    • 제13권3호
    • /
    • pp.539-544
    • /
    • 1998
  • Let (M, g) be a noncompact complete Riemannian manifold of dimension n $\geq$ 3 with scalar curvature S, which is close to O. With conditions on a conformal invariant and scalar curvature of (M, g), we show that there exists a conformal metric (equation omitted), near g, whose scalar curvature (equation omitted) = 0 by gluing solutions of the corresponding partial differential equation on each bounded subsets $K_{i}$ with ∪$K_{i}$ = M.

  • PDF

Accurate buckling analysis of rectangular thin plates by double finite sine integral transform method

  • Ullah, Salamat;Zhang, Jinghui;Zhong, Yang
    • Structural Engineering and Mechanics
    • /
    • 제72권4호
    • /
    • pp.491-502
    • /
    • 2019
  • This paper explores the analytical buckling solution of rectangular thin plates by the finite integral transform method. Although several analytical and numerical developments have been made, a benchmark analytical solution is still very few due to the mathematical complexity of solving high order partial differential equations. In solution procedure, the governing high order partial differential equation with specified boundary conditions is converted into a system of linear algebraic equations and the analytical solution is obtained classically. The primary advantage of the present method is its simplicity and generality and does not need to pre-determine the deflection function which makes the solving procedure much reasonable. Another advantage of the method is that the analytical solutions obtained converge rapidly due to utilization of the sum functions. The application of the method is extensive and can also handle moderately thick and thick elastic plates as well as bending and vibration problems. The present results are validated by extensive numerical comparison with the FEA using (ABAQUS) software and the existing analytical solutions which show satisfactory agreement.