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EXISTENCE OF SOLUTIONS FOR
P-LAPLACIAN TYPE EQUATIONS

JoNagsiK KIM AND HYEJIN Ku

1. Introduction

In this paper, we shall show the existence of solutions of the following
nonlinear partial differential equation

divA{(—Vu) = f(r,u,Vu) in Q
{ uw=0 on 0%

where f(z,u,Vu) = —u|VulP™ +h, p > 2, h € L>*. Also, we
will deal, via mountain pass theorem, with the problem of existence of
solutions for a quasilinear elliptic equation

divA(—Vu) = g(r,u) in Q
u=20 on 0Q
where ¢ : # x R — R is a Carathéodory function with primitive
G(z,u) = fou g(z,v)dv which satisfies the following assumptions:

(gl) limsup,_ I%li,—_’ill =0;

(82) 3s <p* = 3£, C t [g(z.u)| L C(1 + [ul*!);

(g3) 3t > p,R,: 0 < tG(z,u) < g(z,w)u, if |u| > R,.
An easy example of such ¢ is g(z,u) = |[u|*"2u with p < s < p*. Here,
divA(—Vu) is the p-Laplacian type operator, which was introduced in
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(2], defined as follows: Let o : R* — [0,00) a convex function of class

C'(R™ — {0}) satisfying
(1.1) a(té) = ta(€) for t>0 and ¢ ¢ R™
Define A(0) = 0 and A(£) = a(£)P~'Va(€) for £ € R* — {0}, and for a

fixed p > 1. Then 4 : R® — R" is a continuous homogeneous mapping
of degree p—1. We also assume that A satisfies the following condition:
There exist positive constants I" and ~ such that

(1.2) (A(E) = A(n)) - (€ =) > (el + In))P~ [ = n)?
(1.3) 1AE) — Al S TUEN+ )P 2] - )

for all £.n € R™. Note that if « € C?(R"™ — {0}) satisfies (1.1) and if
there exists o > 0 such that
(1. 4)

2
z 9 alf) “=71i7; > oln|*> whenever o(£)=1 and Va(£)-n =0,
2= e,

then A satisfies (1.2) and (1.3). Note also that if p > 2 then (1.2)
implies that

(1.5) (A) — A(n)) - (§ = n) > ¥E =/
for all £,7 € R™. By (1.1) — (1.3), we have

(1.6) A(£) - € == a(€)P,

(1.7) VIEP < A(E)-€ < TIEP

for all { € R™. Let  be an open set in R™. By the p-Laplacian
type operator we mean the operator A : u — divA( Vu) that assigns

divA(=Vu) € W) to each u € W,'P(Q), where 1 1+1=1 Thus

loc

if fe Wloc 4(92) is given, we mean by a solution of the problem
divA(=Vu) = f m
a function u € W,_?(Q) such that
—/A(—Vu) Vo =< f, 0>
for all ¢ € C}(Q).



Existence of solutions for p-Laplacian type equations 293

EXAMPLES. We give a few examples of a satisfying (1.1) — (1.3).
a() = [€] = (L [&1*)%, 4(6) = lePP~¢.

n i - -
a(€) = (2icy [&lP)7, A(E) = (I&lP7261, - - -, [€alP~2E0).
a = a1 + ay with a; and a; satisfying (1.1) - (1.3).
The function a : R™ — R defined implicitly by ¢(£/a(€)) = 1 where
@ : R™ — R is a function of class C?(R") satisfying that there exists
o > 0 such that

W e

n 52 ,
O n. > - R™
IEZI 3E.0€, w(&)nin; > o|n| forall £neR

and that {£ € R™|¢(€) < 1} is a bounded neighborhood of the origin

in R"™.

When p = 2 and o) = |€], divA(—Vu) = —Au. In this case, the
convergence and existence results have been obtained. See for instance
Struwe[9], Boccardo-Murat-Puel[3], Rabinowitz[8]. Also, note that the
properties of solutions of p-Laplacian type operator have studied gen-
erally by Baek[2]. In this paper, we extend the results in Laplacian
case to generalized versions in p-Laplacian type operator.

We would like to thank Professor Hyeong In Choi for many fruitful
consultations.

2. Convergence Results For Nonlinear Elliptic Equation

In this section, we shall prove the existence of the solution of a
nonlinear boundary value problem of the type

divA(=Vu) + u|VulP ™% = & in Q
u=20 on 00

by an approximation method. At first we state a lemma for the basic
property of a and prove a theorem stating that under certain com-
pensated condition the gradients of approximate solutions converge as
follows.
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LEMMA 2.1. Let LP(u)"™ be the Banach space of all R™-valued u-
measurable funtions X with finite L? - norm || X||,r (,yn = ([ |X|Pdp)%‘
If X; is a sequence in LP(p)™ with the weak limit X such that [ o X;)?
dp — [ a(X)Pdu, then X; — X strongly in LP(u)".

Proof. The proof of the lemma is in [2]. But for the safe of complete-
ness, it is presented here. If X = 0, then v [ ||X;|[Pap < [ a(X;)?Pdu —
0. Assume X # 0. Put ¥Y; = (X + X;)/2 and Z; = (X - X,)/2. By

weak lower semicontinuity, we have

liminf /a(X—%XJ-/fZ')Pd,u > /a(X)”dp.

J—oo

o( XV +a(X;) - 2a(Y;

1
b [ (A +12) - A, - 02, ) 2
0
> Co(| X+ | X122, if 1<p<?2

If 1 < p < 2, by Holder inequality
/(le +1X;0P7%Z,1  dp > (/(IXE + 1le)”du)”’2/”(/ |Z;Pdp)*'*

Since [ (X )P + a(X;)P — 2a(X + X;/2)Pdu goes to zero, we obtain
J1Z;|Pdp — 0 as desired.

THEOREM 2.2. Suppose {un,} € H}?(Q) is a sequence of solutions
to elliptic equation

divA(—Vu,) = fm in Q
Um = 0 on 0N

in a smooth bounded domain §2 in R™. Let ¢ be such that

*

p
pr—1
g>1 if p=n

q> if 1<p<n

g=1 if p>n
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where p* = n—"_‘%. Suppose uy — u weakly in H}'P(Q) while {fn} is

bounded in LY(Q). Then there is a subsequence such that Vu,, — Vu
in LP(2) and Vup, — Vu pointwise almost everywhere.

Proof. By weak lower semicontinuity

Iiminf/a(—Vum}pdx > /a(—Vm)pdm.

m—o0

We want to show that limsup,, . [a(—Vuy,)Pdr < [a(-Vu)Pdz.
Note that

a(=Vu)? — a(=Vum)? — pA(~Vum) (=Vu+ Vu,)

1
= p/ {A((=Vum) +H(~Vu+ Vum)) — A(=Vum)) (=Vu + Vun,)dt
0
1
> w/ (| = Vium + t{(~Vu+ Vup )| + | = Vum|)? 7% = Vu+ Vun,|? >0
J0

By the uniform boundedness of (f,,) and the Rellich-Kondrakov theo-
rem

~/A(—Vum)'(—Vu+Vum) = /fm(—1¢+um) -+ 0 as  m — 0o.

Therefore [ a(—Vun,)Pdr — [ a(-Vu)?. By Lemma 2.1, Vu,, - Vu
in LP() and Vu, — Vu pointwise almost everywhere.

We obtain the following theorem stating that a weak limit of approx-
imate solutions is a solution of the given equation in case the operator
1s monotone and continuous in R".

THEOREM 2.3. Let {um} and {fm} be as in Theorem 2.2 and if
fm — f weakly in L9(Q). Take a subsequence of {u,,}, still called
{u} as in Theorem 2.2, then u is a weak solution of

divA(—Vu) = f in Q
u =70 on OfL.

Proof. Since A is monotone,

0< /(A(—VU) — A(=Vup)) - (=Vv+ Vupy)dr
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for all v € H2?(Q). Furthermore, the identity

—/A(—Vum) (=Vv 4+ Vuy,)dz = /fm{—v + Uy )dx

holds. Now pass to the limit to get
0< /A(—Vv) (=Vo + Vu) + f(—v + u)dz.

Fix A > 0, w € H}?(Q), and set v = u + Aw. Upon cancelling A, we
have

0> —/A(-—Vu — AVw) - Vw — fwdz.

Then send A to zero to deduce

0< —/A(—Vu) -Vw — fwdr.
Replacing w by —w, we obtain

0=- /A(—Vu) -Vw — fwdx

for each w € H}P(Q).

To get the existence and uniqueness of solutions, we shall use the
following theorem, due to Struwe[9], giving sufficient conditions for a
functional to be bounded from below and to attain its infimum.

THEOREM 2.4. Suppose V is a reflexive Banach space, and let M
be its weakly closed subset. Suppose E : M — RU{+o00} is coercive on
M with respect to V', and (sequencially) weakly lower semicontinuous
on M with respect to V. Then E is bounded from below on M and
attains its infimum in M.

Proof. Refer to Theorem 1.2 in [9].
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THEOREM 2.5. Let § be a bounded domain inR™ and f € H~19(Q)
be given. Then there exists a weak solution u € Hy"?() of the bound-
ary value problem

divA(—-Vu) = in
o { (-Vu) = f

w=0 on 9.

Proof. Set the corresponding functional

E(u):%/ﬂa(—Vu)pdx—/qudx

on the Banach space H}?(); that is, problem (2.1) is of variational
form. Note that H}?(Q) is reflexive. Moreover, £ is coercive. In fact,

1 Y
E(u) > }—)ﬂlull’,’{;,p = la-vollull g1 > ;(HUH’},;.;J = |[uflgyrr)

> Cy|uf| - Cs.

P
H;’P

Finally, E is weakly lower semicontinuous: It suffices to show that

/fumdr—»/fuda:.

for upy — u weakly in H)'P(Q). This follows from the very definition
of weak convergence, since f € H~1%(Q). Hence Theorem 2.4 implies
that there is a minimizer v € Hl”.

REMARK. In the same way, a result like Theorem 2.5 is obtained
for f = f(z,u, Vu) with |f(z,u, Vu)| < C.

REMARK. Our operator is strictly monotone in the sense that

/(A(—Vu) — A(—=Vv)) - (=Vu + Vuv)dz

> 7/([ — Vu| + [Vu[)P 7% = Vu + Vo|*dz.
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Now it is bigger than v [| — Vu + Vv[Pdz when p > 2. If 1 < p < 2,
we have

/(| — Vu| + | = Vo|)P 7| - Vu 4 Vol dr
= (/(1 = Vul 4| - v“l\)pdf)L;g(/l —Vu+ V?l]pdj')%

by Holder inequality. So, in particular, the solution u is unique.

We close this section by proving the existence of a solution of the
following equation as a way of illustrating the use of results we ob-
tained:

THEOREM 2.6. Let Q be a smooth and bounded domain in R”.
Suppose p > 2 and h € L>°(Q}). Then the following equation

divA(—Vu) + u|Vu|""? = h m
u=0 on 0N

has a solution in H}'P(Q).

Proof. Set the nonlinear term g(u,Vu) = u|Vu|P~? and approxi-
mate g by functions

| g(u. Vu)
(u.Vu) = =gy, e> 0
g (u, U) 1+ E}g(u,Vu)l i

satisfying |g¢| < 1 and g (u, Vu)u > 0.

Now, since g, is uniformly bounded, the map H!"* 3 u v g.(u, Vu)
€ H~'1 is compact and bounded for any ¢ > (. Denote F.(u) =
A(u)+ge(u, Vu) = divA(—Vu)+g(u, Vu). The remark after Theorem
2.5 indicates that there is a solution u, € H!?(Q) of the equation
Fou,=h.

In addition, we have

‘T'HUEH’;{(],'P < /a(—Vuf)pd.r << uﬂFfuf =g “mh >

§||“f|

H(}vPHh“H'Lh
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so {uc} is uniformly bounded in H!?(Q). We also deduce the uniform

Lé-bound of ge(uc, Vue)by letting ¢ = 225 where 6§ = 2E=10 5 1,

In fact,

ng(“e’vuf)Hqu _<_/[u(|VuE]p_2|qd:r

< flul? dy = [vuly<c

where r = %1(%9’_—_12)). We may assume that the sequence {um = u, }
weakly converges in H}?(Q) to a limit u € H}?(2). By Theorem 2.2,
moreover, we may assume u,, converges strongly in H'?(Q) and u,,
and Vu,, converge pointwise almost everywhere. Finally, Theorem 2.3

implies that u weakly solves (2.2) as desired.

REMARK. In case of f(z,u,Vu) = —|VulP~! + h with p > 1 and
h € L, we can prove the existence of solution in the same way as in

Theorem 2.6.

3. Existence Results For Quasilinear Elliptic Problem

In this section we deal with the existence of solutions of the quasi-
linear elliptic equation

divA(—Vu) = g(z,u) in &
u=20 on )

assuming Conditions (g1)-(g3).

Let V be a Banach space. Recall that an operator F : V — V* is
sald to be pseudo-monotone if

(1) F is bounded

(2)u; —uinV and limsup; _ (F(u;),u; —u) < 0 imply

(3.1) lminf(F(u;),u; —v) > (F(u),u—v) Yo e V.
j—oo

The following lemma, whose proof is given below, is taken from [7].
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LEMMA 3.1. A pseudo-monotone operaror F has the following prop-
erty:
Ifu; = uwinV, Fu;) — x in V* and limsup;_, . (F(u;),u;) < (x,u),
then x = F(u).

THEOREM 3.2. The p-Laplacian type operator A : H(}’p — H™19
given by A(u) = divA(—Vu) is pseudo-monotone. Thus A has the
property as in Lemma 3.1.

Proof. First, note that

JA@)lg-10 =  sup / A(=Vo)Vpdz

llelly2.p=1

< sup/F| — Vol 1V |de
<supT([ 1= Vol da) 5 ([ [Volrdr)? = Tl

imply the boundedness of A. Next, if u; satisfy the hypotheses of (2)
above, then

(3.2) (A(uy),u; —u) — 0
In fact, since A is monotone and u; — u — 0 in H}?(Q),
(A(uj),uj —u) 2 (A(u),u; —u) -0
Suppose w = (1 — e)u + ev, €€ (0,1); we have
(A(u;) = A(w),u; —w) >0
Therefore
e(Aluj),u —v) > ~(A(u;),u; — u) + (A(w),u; — u) — e(A(w), v — u).

By (3.2),
slijn_l’i;.}f(A(uj),u —v) 2> —e(A(w),v — u).
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dividing by € and using (3.2) again, we have

liminf(A(u;),u; —v) > (A(w),u —v).

J—0o0

Passing € — 0 in this equation, we deduce (3.1) as desired.

Proof of Lemma 3.1. We shall still use the same notations as in
Theorem 3.2. Suppose u; — u in H}?(Q), A(u;) — x in H~19(Q)
and
limsup; . (A(u;),u;) < (x,u). Then,

limsup(\A(u;),u; —u) <0

7—00
and by (3.1),

(A(u),u —v) < liminf(A(u;),u; —v) < (x,u —v) Yo € HMP(Q).

J—o

Therefore x = A(u).

To obtain the result we want, we shall use the famous mountain
pass lemma, see Ambrosetti and Rabinowitz [1].

THEOREM 3.3. Suppose E € C*(V) satisfies (P.-S.). Suppose
(1) E(0) = 0;
(2)dp>0.a>0:|u|| = p= E(u)
(3) Juy € Vi |jug|| > p and E(u;) <

Define
={p e C°([0,1};V); p(0) = 0,p(1) = u; }.
Then
= inf E
8= iaf sup B(w)

1s a critical value.

REMARK. The conclusion of Theorem 3.3 remains valid at level 3
under the weaker assumption, which we call (P.-S.);s condition, that
(P.-S.)-sequences {um } for F such that E(u.,) — ;3 are relatively com-
pact.
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THEOREM 3.4. Let Q be a smooth, bounded domain in R",n > p
and let g : 2 x R — R be a Carathéodory function with primitive
G(z,v) = fo z.v)dv. Suppose the following conditions hold:

(1) limsup,_,, -lng—!f,—_l—‘% = 0 uniformly in z € Q;

(2) ds < p* = n—"_l';,C lg(z,u) < C(1 + |uj*'), for almost every
z€Q u€ER;

(3) 3t > p,R, : 0 < tG(z,u) < g(z,u)u for almost every z € §, if
lu| > R,.

Then the problem

(3.3) { divA(~Vu) = g(z,u)  in Q

u=~1 on 0N
admits non-trivial solutions ut > 0 > u~.

REMARK. A similar result in a Laplacian case was proved by Struwe
[9; p.102].

Proof. The problem (3.3) corresponds to the Euler-Lagrange equa-
tion of the functional

E(u):l/ a(—Vu)de—/ G(z,u)dr
P Ja 2

on the space H}'P(Q). Note that
||[divA(=Vu) — divA(=Vv)|| ;-1

= sup ]/Q(—A(——Vu)—!»A(—-Vv)) Vidz|

[EMES:

< sup |A -Vu) 4+ A(-Vv)||Vp|dz

1

5smx/Lm~vw+n«_vmw%¢w%%/WVﬂhwﬁ
Q

e2xl

S[/H~VM+PVIPH—VW+ o) 75T da]
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Now it is less than I'( [, | - Vu+ Vv ”dx)t:—l whenl < p <2 Ifp> 2,

we have

/((l ~ Vul+| = Ve)P 7 = Vu + Vo[ )75 de
)
< (/(] —Vu|+ |- Vv[)de)i{_f(/ | — Vu+ Vo|Pdz)s=T
Q Q

by Holder inequality. Therefore if u — v in H}?(Q), then divA(—Vu)
— divA(—Vuv) in H~19(Q). This fact and assumption (2) imply that
E is of class C'!

To see that E satisfies (P.-S.) . we claim that

lumllpgyr < C

for a sequence {un,} in H!? such that E(um,) — 3 and DE(um,) — 0
in H~ 19, We obtain

C+o(Dlfumll i 2 tE(um)~ < upm, DE(uy,) >

(< [al=Vunpde = [ Glaumide) - [ a(-Tunpis
p
+/g('x,um)umd9:

—ﬂ a(—Vu,)Pdz T, u - T, u
=L [al=Sunrde + [(oe um)un - tGlz,un)dz

v

t — -
P allumllty» + £7(Q) infeen senla(z. v = 1Gla.v)

where o(1) — 0 as m — oo.
Thus we may assume that u,, — u weakly in HI‘P(Q) Since the

cpt (-,u)
map u +— g{-, u): HlvP(Q)-—p-»L (Q)g——-)La Q) ——»H La(Q) is

compact, we also may assume that

Um —U weakly in  H}P(Q)

Um —U in L°(Q)
Um U ae. T €EN
g(".um) _’g(',‘ll) in H‘_I'Q(Q)

divA(—Vup,) —x weakly in  F~19(Q).
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Since divA(~Vu,) — g(2,um) = (m where (m — 0in H=19(Q), then
for any ¢ € H}P(Q)

<divA(~Vup),p > — < g(z,um )y >=< Cmy 0 > .
Passing to the limit m — oo, we have x = g(z,u). Also,

limsup < divA(—Vu,). uy >

m—oo

< limsup/ 9(z, um)umdz + o(1)|[uml| s
0

m— 00
= / g(z,u)udr =< y,u >
Q

Thus Theorem 3.2 implies x = divA(—Vu). Moreover, since
[|divA(—Vup,) — divA(=Vu)|| -1,
< [ldivA(=Viem) = gz, wm)l 1-ss + llg(m) — xllir-,

divA(—Vup) — divA(=Vu) in H-19(). So, E satisfies (P.-S.)
From assumption (1), for any € > 0 there is § > 0 such that lul <é

implies JI,,—_T < €. Then

Glau) = [ gtaudo < Spup
0 p
if |u| < 6. Also by (2) we obtain
G(z,u) < C(e)|ul’
for some constant C(e), if ju| > é. Thus
Gla,u) < eful? + C(Oul?

for all u € R and almost every z € Q. It follows that

B(u)> 1 / V) de—f/ lulPdz — C e)/ lu)*dz

Te, .
> —'y||u||H;,,, - —||u|f’;{1,, = Celull s

I'e
= (1= = = ClOlullyh )l > w>0
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if ||u]{y1» = p is sufficiently small. Here, we have used the fact that

A < [ a(=Vu)Pdz < Fllull’;{é,,
T Sz Tl

and the fact that H}'P(Q) — L*(Q).
Observe that E(0) = 0. Finally, (3) can be restated in the form

ulul‘%(!ur"G(x,u))zo for |u|> R,

Upon integration, we have

with 7y.(z) = Ry 'min{G(z, R,),G(z,—R,)} > 0, if |u| > Ry. Hence,

P
E(Au) = %—Aa(—VU)pdr -/ G(z, Au)dz

r
< =XP|ull?., —/\t/ o) |ultdz
<Rl <3 [ e

+ L) infreq vi<r,

G(z,v)| - —o0 as A — oo.

We may let u; = Au for fixed v # 0 and sufficiently large A > 0.
Therefore we obtain, from Theorem 3.3 the existence of a nontrivial
solution to (3.3)

In order to obtain a solution u* > 0, we may truncate g below
u = 0, replacing g by

g(z,u) if wu
+ —
g (’”’”)“{0 i u

A IV
<o

with primitive Gt(z,u) = fou gt (z,v)dv. Note that (1), (2) remain
valid for g% while (3) will hold for u > R,, almost everywhere in ).
Moreover for u < 0 all terms in (3) vanish. Denote

E+(u):%/s;a(—Vu)pdx—/QG*'(.r,u)da:.
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Our previous reasoning then yields a nontrivial critical point ut of E*
which weakly solves the equation

divA(=Vut) = ¢T(z.u™) in €.
Rewriting it as
divA(—Vut) + N(gTiz,ut)) = P(gt(a,u™))

where P(a) = max(a,0) and N(a’ = max(—a,0), we have
- /‘44(~'V'U,+) -V - /N(g+(1,u+));,9 >0

for all p € H;'p(Q) with ¢ > 0. Substituting » == N(ut), we deduce
that

/ AT (=t - [ Nttt <0
{ut <o}

J{ut <0}

while the left hand side is not less than a positive constant multiple of
f{u+<0} | — Vut|P. Therefore N(uT) = 0, that is, u™ > 0 a.e. in €.
Hence we conclude that u* is a weak solution of the original equation
(3.3). Similarly, we can show that «~ < 0 is alsc: a weak solution of

(3.3) as desired.

REMARK. We note that if u ¢ HOI‘P(Q) weakly solves (3.3) with
g satisfying the hypotheses of Theorem 3.4, then u weakly solves the
equation

divA(~Vu) = a(e)(1 + JulP~")

with
ERTE )

ST

We can then deduce that u € LY for any ¢ < oo, therefore u € ('1-®
with some a > 0; see [2], [6], [10].
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