• Title/Summary/Keyword: Solution deposition

Search Result 866, Processing Time 0.029 seconds

Dependence of reaction temperature on the properties of CdS thin films grown by Chemical Bath Deposition (Chemical Bath Deposition으로 성장한 CdS 박막의 반응온도에 대한 특성)

  • Lee, Ga-Yeon;Yu, Hyeon-Min;Lee, Jae-Hyeong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.805-808
    • /
    • 2010
  • In this paper, CdS thin films, which were widey used window layer of the CdS/CdTe and the CdS/$CuInSe_2$ heterojunction solar cell, were grown by chemical bath deposition, and effects of temperature of reaction solution on the structural properties were investigated. Cadmium acetate and thiourea were used as cadmium and sulfur source, respectively. And ammonium acetate was used as the buffer solution. The reaction velocity was increased with increasing temerature of reaction solution. For temperature <= $85^{\circ}C$, as increasing temperature of solution, deposition rate of CdS films was increased by ion-by-ion reaction in the substrate surface, and the crystallinity of the films was improved. However, for temperature <= $55^{\circ}C$, deposition rate was decreased resulting from smaller Cd2+ ion, and the grain size was decreased.

  • PDF

In-Situ Optical Monitoring of Electrochemical Copper Deposition Process for Semiconductor Interconnection Technology

  • Hong, Sang-Jeen;Wang, Li;Seo, Dong-Sun;Yoon, Tae-Sik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.2
    • /
    • pp.78-84
    • /
    • 2012
  • An in-situ optical monitoring method for real-time process monitoring of electrochemical copper deposition (CED) is presented. Process variables to be controlled in achieving desired process results are numerous in the CED process, and the importance of the chemical bath conditions cannot be overemphasized for a successful process. Conventional monitoring of the chemical solution for CED relies on the pH value of the solution, electrical voltage level for the reduction of metal cations, and gravity measurement by immersing sensors into a plating bath. We propose a nonintrusive optical monitoring technique using three types of optical sensors such as chromatic sensors and UV/VIS spectroscopy sensors as potential candidates as a feasible optical monitoring method. By monitoring the color of the plating solution in the bath, we revealed that optically acquired information is strongly related to the thickness of the deposited copper on the wafers, and that the chromatic information is inversely proportional to the ratio of $Cu$ (111) and {$Cu$ (111)+$Cu$ (200)}, which can used to measure the quality of the chemical solution for electrochemical copper deposition in advanced interconnection technology.

Effects of pH of Reaction Solution on the Structural and Optical Properties of CdS Thin Films for Solar Cell Applications (태양전지용 CdS 박막의 구조적 및 광학적 특성에 미치는 반응용액의 pH 영향)

  • Lee, Jae-Hyeong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.8
    • /
    • pp.616-621
    • /
    • 2011
  • In this paper, CdS thin films, which were widely used window layer of the CdTe and the Cu(In,Ga)$Se_2$ thin film solar cell, were grown by chemical bath deposition, and effects of pH of reaction solution on the structural and optical properties were investigated. For pH<10.5, as the pH of reaction solution was higher, the deposition rate of CdS films was increased by improving ion-by-ion reaction in the substrate surface and the crystallinity of the films was improved. However, when the pH was higher than 10.5, the deposition rate was decreased because of smaller $Cd^{2+}$ ion concentration in the reaction solution. Also, the crystallinity of the films were deteriorated. The CdS films deposited at lower pH showed poor optical transmittance due to adsorbed colloidal particles, while the transmittance was improved for higher pH.

Electrodeposition of Copper on AZ91 Mg Alloy in Cyanide Solution

  • Nguyen, Van Phuong;Park, Min-Sik;Yim, Chang Dong;You, Bong Sun;Moon, Sungmo
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.3
    • /
    • pp.238-244
    • /
    • 2016
  • Copper electrodeposition on AZ91 Mg alloy was studied in views of preferential deposition on ${\alpha}$- or ${\beta}$- phases and how to achieve uniform deposition over the entire surface on ${\alpha}$- and ${\beta}$-phases in a cyanide solution. The inhomogeneous microstructure of AZ91 Mg alloy, particularly ${\alpha}$- and ${\beta}$-phases, was found to result in non-uniform deposition of zincate layer, preferential deposition of zincate on ${\beta}$-phases, which leads to non-uniform growth of copper layer during the following electrodeposition process. The preferential depositions of zincate can be attributed to higher cathodic polarizations on the ${\beta}$-phases. Pin-hole defects in the copper electrodeposit were observed at the center of large size ${\beta}$-phase particles which is ascribed to gas bubbles formed at the ${\beta}$-phases. The activation of AZ91 Mg alloy in hydrofluoric acid solution was used to obtain uniform growth of zincate layer on both the ${\alpha}$- and ${\beta}$-phases. By choosing an optimum activation time, a uniform zincate layer was obtained on the AZ91 Mg alloy surface and thereby uniform growth of copper was obtained in a cyanide copper electroplating solution.

Effects of Multi-Complex Agent Addition on Characteristics of Electroless Ni-P Solution (복합 착화제 첨가가 무전해 Ni-P 도금액의 특성에 미치는 영향)

  • Lee, Hong-Kee;Lee, Ho-Nyun;Jeon, Jun-Mi;Hur, Jin-Young
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.2
    • /
    • pp.111-120
    • /
    • 2010
  • In this study, the effects of multi-complex agents addition on characteristics of electroless Ni plating solution are investigated. The species and the concentration of complexing agents are major factors to control the deposition rate, P concentration, and surface morphology of plating films. Adipic acid increases the deposition rate in regardless of single- or mutli-complex agent addition. However, lactic acid effectively increases the deposition rate in case of multi-addition as the complex agents with adipic or sodium succinate acid. In addition, sodium citric acid and malic acid show good stabilizing effects of plating solution and lowering the deposition rate, because they have high complexibility. Therefore, it is suggested that the development of Ni-P plating solution suitable for diverse usages can be carried out systematically using the database from this study.

Detergency and soil Redeposition in a Drycleaning System -The Effect of Surfactant Type and Their Mixture- (드라이클리닝 시스템에서의 세척성과 재오염성 -계면활성제의 종류와 혼합이 미치는 영향-)

  • 김주연;박정희
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.23 no.7
    • /
    • pp.1030-1039
    • /
    • 1999
  • The effect of surfactant mixture 9on detergency and soil redeposition in a dry-cleaning system was investigated employing Aerosol OT as an anionic surfactant and Span 80 as a nonionic surfactant. The effect of charge system on soil deposition was also investigated in order to determine the optimum condition at which soil redeposition is minimum,. Soil deposition instead of soil redeposition on cotton, polyester and wool fabrics was measured employing petroleum solvent and perchloroethylene as organic solvents. The results were as follows. 1. Surface tension or interfacial tension was not changed by the addition of any surfactant or surfactant mixtures. In petroleum solvent however interfacial tension between solrent and water decreased when surfactants were added and increased when surfactants were mixed,. 2. The maximum amount of water solubilization increased as the mole fraction of Aerosol OT increased and more water was solubilized in petroleum solvent than in perchloroethylene. 3. The detergency of cotton was greater and the soil deposition rate was lower in Span 80 solution than in Aerosol OT solution. The soil deposition on cotton fabric decreased when water was solubilized in Aersol OT solution 4. The detergency and soil deposition rate of polyester fabric did not change by the surfactant type of the addition of surfactant mixture and soil deposition rate increased bywater solubilization. 5. Soil deposition on wool fabric was very high when Arosol OT was employed in perchloroethylene and the soil deposition did not change greatly by water solubilization.

  • PDF

Investigation of the Effect of Acidity and Polyethylene Glycol on Electrochemical Deposition of Trivalent Chromium Ions

  • Phuong, N.V.;Kwon, S.C.;Lee, J.Y.;Kim, M.;Lee, Y.I.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2011.05a
    • /
    • pp.47-48
    • /
    • 2011
  • The effect of solution acidity and organic additives, polyethylene glycol (PEG), on the trivalent chromium electroplating was systematically investigated in the view point of solution stability, electroreduction of trivalent chromium ions and characterization of deposition layer. It was found that, the concentration of fraction chromium complexes in the trivalent chromium bath containing formic acid is strongly depended on pH value. PEG molecules were stable in trivalent chromium bath containing formic acid via studies on electrospray ionization mass spectrometry (ESI-MS) and UV-Vis. However, the presence of PEG molecules decreased the reductive current of hydrogen evolution, increasing of current efficiency higher about 10 % compared with solutions without PEG. Moreover, PEG additives developed the nodular morphology during electroreduction of trivalent chromium ions with the increase of solution acidity and enhanced its current efficiency by maintaining the consumption of complexant, formic acid, at a low speed. In this study, the effect of solution acidity was emphasized important, there, it controlled the formation of complexes in the solution, cathodic film (CF) during deposition, and properties of deposited layer. By electrochemical quartz crystal microbalance (EQCM), studies show that chromium electrodeposition occurs via the formation of intermediate complexes and adsorption on the cathode surface, which hinder the penetration of ions from bulk solution to the cathode surface.

  • PDF

Properties of Carbon Films Formed for Renewed Electric Power Energy by Electro-deposition (신 재생 에너지 활용을 위한 Carbon 박막의 특성)

  • Lee, Sang-Heon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.147-150
    • /
    • 2007
  • Electro-deposition of carbon film on silicon substrate in methanol solution was carried out with various current density, solution temperature and electrode spacing between anode and cathode. The carbon films with smooth surface morphology and high electrical resistance were formed when the distance between electrode was relatively wider. The electrical resistance of the carbon films were independent of both current density and solution temperature.

Synthesis of CdTe Thin Films for Solar Cell using Solution-based Deposition Method at Low Temperature (저온 용액 공정을 이용한 태양전지용 CdTe 박막 합성)

  • Bae, Eun-Jim;Ryu, Si-Ok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.373-376
    • /
    • 2009
  • CdTe thin films for photovoltaic cell devices were deposited on the glass substrates by solution-based deposition methods, at low temperature processing conditions. In order to characterize physical, optical, and electronic properties of CdTe light absorbing polycrystalline material, a series of analysis was carried out in this study.

  • PDF

Effect of Deposition Parameters on the Morphology and Electrochemical Behavior of Lead Dioxide

  • Hossain, Md Delowar;Mustafa, Chand Mohammad;Islam, Md Mayeedul
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.197-205
    • /
    • 2017
  • Lead dioxide thin films were electrodeposited on nickel substrate from acidic lead nitrate solution. Current efficiency and thickness measurements, cyclic voltammetry, AFM, SEM, and X-ray diffraction experiments were conducted on $PbO_2$ surface to elucidate the effect of lead nitrate concentration, current density, temperature on the morphology, chemical behavior, and crystal structure. Experimental results showed that deposition efficiency was affected by the current density and solution concentration. The film thickness was independent of current density when deposition from high $Pb(NO_3)_2$ concentration, while it decreased for low concentration and high current density deposition. On the other hand, deposition temperature had negative effect on current efficiency more for lower current density deposition. Cyclic voltammetric study revealed that comparatively more ${\beta}-PbO_2$ produced compact deposits when deposition was carried out from high $Pb(NO_3)_2$ concentration. Such compact films gave lower charge discharge current density during cycling. SEM and AFM studies showed that deposition of regular-size sharp-edge grains occurred for all deposition conditions. The grain size for high temperature and low concentration $Pb(NO_3)_2$ deposition was bigger than from low temperature and high concentration deposition conditions. While cycling converted all grains into loosely adhered flappy deposit with numerous pores. X-ray diffraction measurement indicates that high concentration, high temperature, and high current density favored ${\beta}-PbO_2$ deposition while ${\alpha}-PbO_2$ converted to ${\beta}-PbO_2$ together with some unconverted $PbSO_4$ during cycling in $H_2SO_4$.